

Eine vom Bund und den Ländern gemeinsam getragene Anstalt des öffentlichen Rechts

Europäische Technische Bewertungsstelle für Bauprodukte

Europäische Technische Bewertung

ETA-13/0909 vom 10. Dezember 2024

Allgemeiner Teil

Technische Bewertungsstelle, die die Europäische Technische Bewertung ausstellt

Handelsname des Bauprodukts

Produktfamilie, zu der das Bauprodukt gehört

Hersteller

Herstellungsbetrieb

Diese Europäische Technische Bewertung enthält

Diese Europäische Technische Bewertung wird ausgestellt gemäß der Verordnung (EU) Nr. 305/2011, auf der Grundlage von

Diese Fassung ersetzt

Deutsches Institut für Bautechnik

Injektionssystem VMU plus für Mauerwerk

Injektionssystem zur Verankerung im Mauerwerk

MKT

Metall-Kunststoff-Technik GmbH & Co. KG

Auf dem Immel 2 67685 Weilerbach DEUTSCHLAND

Werk 1, D

Werk 2, D

81 Seiten, davon 3 Anhänge, die fester Bestandteil dieser Bewertung sind.

EAD 330076-01-0604, Edition 10/2022

ETA-13/0909 vom 8. Dezember 2016

DIBt | Kolonnenstraße 30 B | D-10829 Berlin | Tel.: +49 30 78730-0 | Fax: +49 30 78730-320 | E-Mail: dibt@dibt.de | www.dibt.de Z201516.24 | 8.06.04-325/19

Seite 2 von 81 | 10. Dezember 2024

Die Europäische Technische Bewertung wird von der Technischen Bewertungsstelle in ihrer Amtssprache ausgestellt. Übersetzungen dieser Europäischen Technischen Bewertung in andere Sprachen müssen dem Original vollständig entsprechen und müssen als solche gekennzeichnet sein.

Diese Europäische Technische Bewertung darf, auch bei elektronischer Übermittlung, nur vollständig und ungekürzt wiedergegeben werden. Nur mit schriftlicher Zustimmung der ausstellenden Technischen Bewertungsstelle kann eine teilweise Wiedergabe erfolgen. Jede teilweise Wiedergabe ist als solche zu kennzeichnen.

Die ausstellende Technische Bewertungsstelle kann diese Europäische Technische Bewertung widerrufen, insbesondere nach Unterrichtung durch die Kommission gemäß Artikel 25 Absatz 3 der Verordnung (EU) Nr. 305/2011.

Seite 3 von 81 | 10. Dezember 2024

Besonderer Teil

1 Technische Beschreibung des Produkts

Der "Injektionssystem VMU plus für Mauerwerk" ist ein Verbunddübel (Injektionstyp), der aus einer Mörtelkartusche mit Injektionsmörtel VMU plus oder VMU plus Polar, einer Siebhülse und einer Gewindestange mit Sechskantmutter und Unterlegscheibe oder einer Innengewindeankerstange besteht. Die Stahlteile bestehen aus verzinktem Stahl, nichtrostendem Stahl oder hochkorrosionsbeständigem Stahl.

Die Ankerstange wird in ein mit Injektionsmörtel gefülltes Bohrloch gesetzt und durch den Verbund und/oder Formschluss zwischen Stahlteil, Injektionsmörtel und Mauerwerk verankert. Die Produktbeschreibung ist in Anhang A angegeben.

2 Spezifizierung des Verwendungszwecks gemäß dem anwendbaren Europäischen Bewertungsdokument

Von den Leistungen in Abschnitt 3 kann nur ausgegangen werden, wenn der Dübel entsprechend den Angaben und Bedingungen nach Anhang B verwendet wird.

Die Prüf- und Bewertungsmethoden, die dieser Europäischen Technischen Bewertung zu Grunde liegen, führen zur Annahme einer Nutzungsdauer des Dübels von mindestens 50 Jahren. Die Angabe zur Nutzungsdauer kann nicht als Garantie des Herstellers ausgelegt werden, sondern ist lediglich ein Hilfsmittel zur Auswahl des richtigen Produkts in Bezug auf die erwartete wirtschaftlich angemessene Nutzungsdauer des Bauwerks.

3 Leistung des Produkts und Angaben der Methoden ihrer Bewertung

3.1 Mechanische Festigkeit und Standsicherheit (BWR 1)

Wesentliches Merkmal	Leistung
Charakteristischer Widerstand für statische und quasistatische Einwirkungen	Siehe Anhang B6, B7 C1 bis C60
Charakteristischer Widerstand und Verschiebungen für seismische Einwirkung	Leistung nicht bewertet

3.2 Brandschutz (BWR 2)

Wesentliches Merkmal	Leistung
Brandverhalten	Klasse A1
Feuerwiderstand unter Zug- und Querbeanspruchung mit und ohne Hebelarm. Minimale Achs- und Randabstände	Siehe Anhang C4, C9, C10, C15, C16, C19, C21, C22, C23, C40, C42, C47, C48, C49, C50, C55 und C56

3.3 Hygiene, Gesundheit und Umweltschutz (BWR 3)

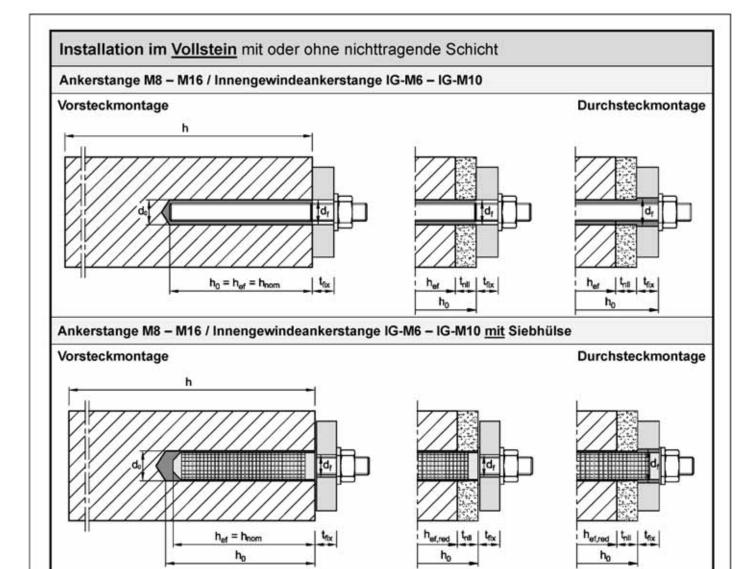
Wesentliches Merkmal	Leistung
Inhalt, Emission und/oder Freisetzung von gefährlichen Stoffen	Leistung nicht bewertet

Seite 4 von 81 | 10. Dezember 2024

4 Angewandtes System zur Bewertung und Überprüfung der Leistungsbeständigkeit mit der Angabe der Rechtsgrundlage

Gemäß dem Europäischen Bewertungsdokument EAD 330076-01-0604 gilt folgende Rechtsgrundlage: [97/177/EG].

Folgendes System ist anzuwenden: 1


Für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit erforderliche technische Einzelheiten gemäß anwendbarem Europäischen Bewertungsdokument

Technische Einzelheiten, die für die Durchführung des Systems zur Bewertung und Überprüfung der Leistungsbeständigkeit notwendig sind, sind Bestandteil des Prüfplans, der beim Deutschen Institut für Bautechnik hinterlegt ist.

Ausgestellt in Berlin am 10. Dezember 2024 vom Deutschen Institut für Bautechnik

Beatrix Wittstock Referatsleiterin Beglaubigt Baderschneider

Bei Durchsteckmontage muss der Ringspalt zwischen Ankerstange und Anbauteil mit Mörtel verfüllt sein.

Legende (Anhang A1 und Anhang A2):

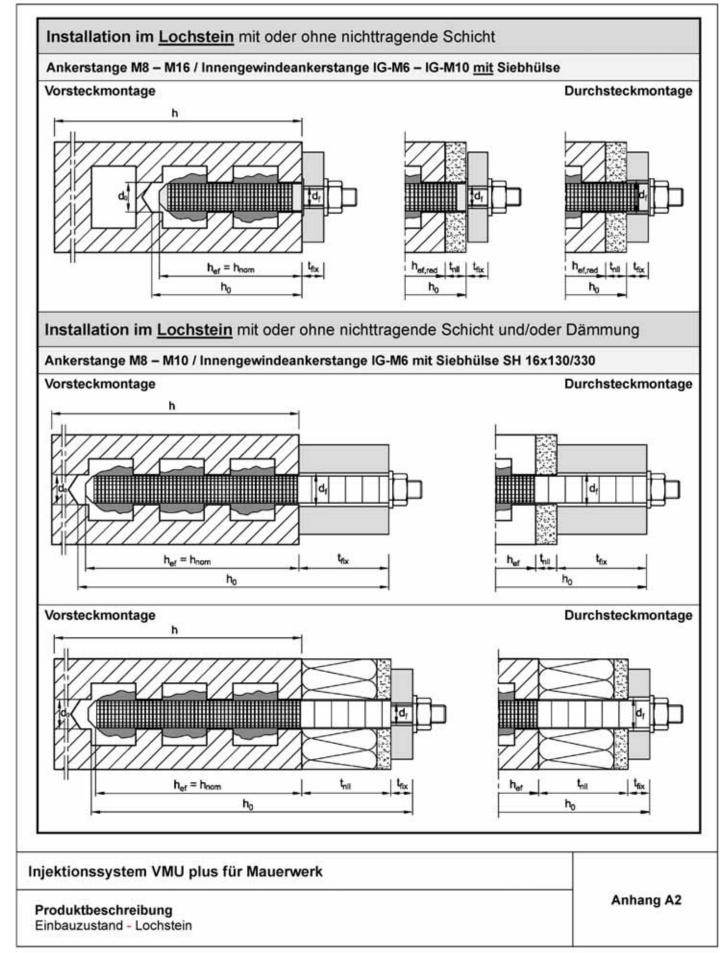
hef = effektive Verankerungstiefe

h_{nom} = nominelle Verankerungstiefe

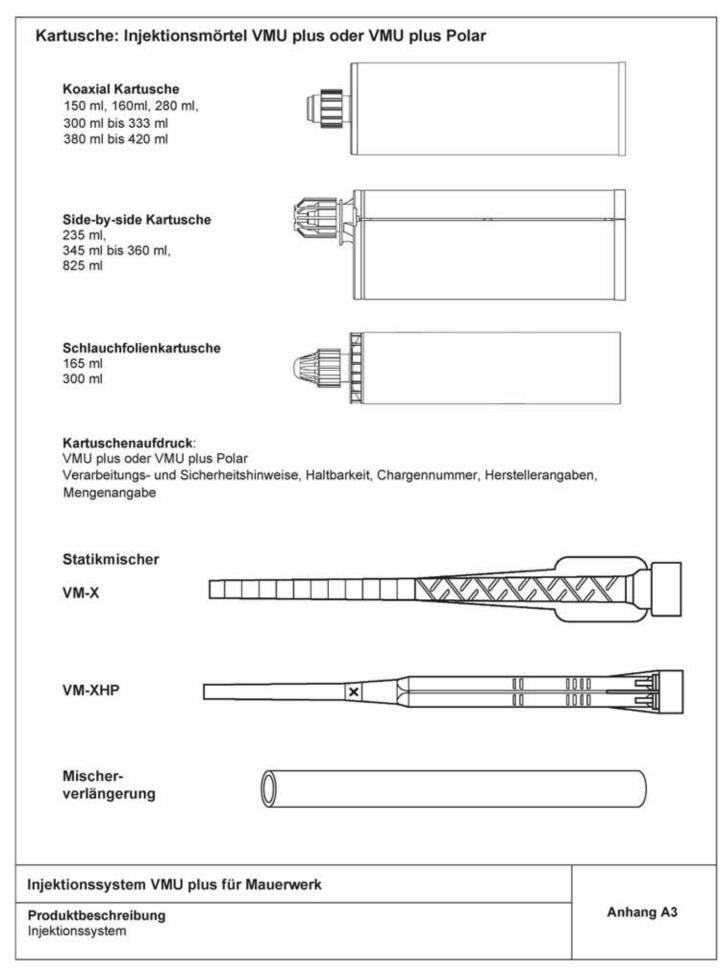
h₀ = Bohrlochtiefe

h = Bauteildicke

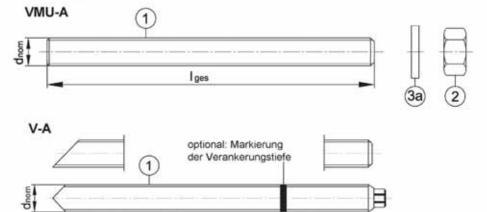
d₀ = Bohrlochdurchmesser


d_f = Durchgangsloch im Anbauteil

tfix = Dicke des Anbauteils


t_{nill} = Dicke der nichttragenden Schicht

Injektionssystem VMU plus für Mauerwerk Produktbeschreibung Einbauzustand - Vollstein Anhang A1



Ankerstangen

Ankerstangen VMU-A und V-A

M8, M10, M12, M16 (verzinkt, A4, HCR) mit Unterlegscheibe und Sechskantmutter

Prägung z.B.: M10

Werkzeichen

M10 Gewindegröße

zusätzliche Kennung:

-8 Festigkeitsklasse 8.8
 A4 nichtrostender Stahl

HC hochkorrosionsbeständiger

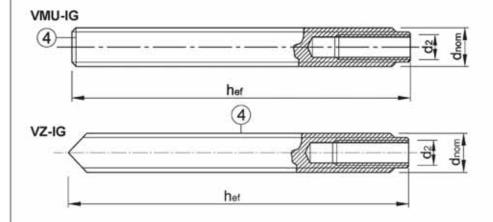
Stahl

Ankerstange VM-A (Meterware zum Ablängen)

M8, M10, M12, M16 (verzinkt, A2, A4, HCR)

Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1

Handelsübliche Gewindestangen


M8, M10, M12, M16 (verzinkt, A2, A4, HCR)

- Werkstoff, Abmessungen und mechanische Eigenschaften gemäß Tabelle A1
- Abnahmeprüfzeugnis 3.1 gemäß EN 10204:2004 (Dokumente sind aufzubewahren)

Innengewindeankerstange VMU-IG und VZ-IG

IG M6, IG M8, IG M10

(verzinkt, A4, HCR)

Prägung z.B.: ◆ M8

Werkzeichen

Innengewinde (optional)

M8 Gewindegröße

(Innengewinde)

zusätzliche Kennung:

-8 Festigkeitsklasse 8.8

A4 nichtrostender Stahl

HCR hochkorrosionsbeständiger

Stahl

Injektionssystem VMU plus für Mauerwerk

Produktbeschreibung

Ankerstangen und Innengewindeankerstangen

Anhang A4

Tabelle A1: Werkstoffe

Ankerstange
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Ankerstange $\begin{bmatrix} 4.8 \\ 5.6 \\ 5.8 \end{bmatrix}$ $\begin{bmatrix} f_{uk} \\ N/mm^2 \end{bmatrix}$ $\begin{bmatrix} 400 \\ 400 \\ 500 \end{bmatrix}$ $\begin{bmatrix} f_{yk} \\ N/mm^2 \end{bmatrix}$ $\begin{bmatrix} 320 \\ A_5 > 8 \% \\ 300 \\ 400 \\ A_5 > 8 \% \end{bmatrix}$ handelsübliche Gewindestanger EN ISO 898-1:20
5.6 [N/mm²] 500 [N/mm²] 300 A ₅ > 8 % Gewindestanger EN ISO 898-1:20
5.6 [N/mm²] 500 [N/mm²] 300 A ₅ > 8 % Gewindestanger EN ISO 898-1:20
5.8 500 400 A ₅ > 8 % EN ISO 898-1:2
8.8 800 640 A ₅ > 8 %
4 für Ankerstangen der Klasse 4.6, 4.8
Sechskantmutter 5 für Ankerstangen der Klasse 4.6, 4.8, 5.6, 5.8 EN ISO 898-2:2
8 für Ankerstangen der Klasse 4.6, 4.8, 5.6, 5.8, 8.8
z.B.: EN ISO 7089:2000, EN ISO 7093:2000, EN ISO 7094:2000, EN ISO 887:2006
Innengewinde- 5.8 Stahl, galvanisch verzinkt oder A5 > 8%
ankerstange ³⁾ 8.8 diffusionsverzinkt A ₅ > 8% EN ISO 683-4:2
chtrostender Stahl A4 CRC III (1.4401 / 1.4404 / 1.4571 / 1.4578) chkorrosionsbeständiger Stahl HCR CRC V (1.4529 / 1.4565) Festigkeits- Charakteristische Charakteristische Bruch-
50 500 210 A5 > 8% EN 10088-1:201
Ankerstange 70 f _{uk} 700 f _{yk} 450 A5 > 8 % EN ISO 3506-1:
80 800 600 A5 > 8 %
50 für Ankerstangen der Klasse 50 EN 10088-1:201
Sechskantmutter 70 für Ankerstangen der Klasse 50, 70 FN ISO 3506-2:
80 für Ankerstangen der Klasse 50, 70, 80
Z.B.: EN ISO 7089:2000, EN ISO 7093:2000, EN 10088-1:201
Innengewinde- 70 nichtrostender Stahl A4;
Innengewinde- ankerstange ³⁾ 70 nichtrostender Stahl A4; hochkorrosionsbest. Stahl HCR A5 > 8 % EN 10088-1:201
Festigkeits- Klasse Streckgrenze Streckgren

Festigkeitsklasse 50 und 70
 Wert in Klammern für VMU-A und V-A
 Bei VMU-IG bzw. VZ-IG müssen die verwendeten Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) mindestens dem Material und der Festigkeitsklasse der Ankerstange entsprechen.

Injektionssystem VMU plus für Mauerwerk	
Produktbeschreibung Werkstoffe	Anhang A5

Tabelle A2: Abmessungen der Ankerstangen und Innengewindeankerstangen

Ankerstangen			M8	M10	M12	M16	
Durchmesser	d = d _{nom}	[mm]	8	10	12	16	
Gesamtlänge	Iges	[mm]	hef + tfix + 9,5	hef + t _{fix} + 11,5	h _{ef} + t _{fix} + 17,5	hef + tfix + 20,	
Innengewindeankerstange		-	IG M6	IG M8	IG M10		
Innendurchmesser	d ₂	[mm]	-	6	8	10	
Außendurchmesser	d = d _{nom}	[mm]	-	10	12	16	
min. Einschraubtiefe	L _{IG,min}	[mm]	=	8	10	10	
Gesamtlänge	Iges	[mm]	A		ebhülse: h _{ef} – 5n ebhülse: h _{ef}	nm	

Tabelle A3: Abmessungen der Siebhülsen VM-SH

Тур	Größe	d _s [mm]	L _s [mm]	h _{ef} = h _{nom} [mm]
$L_s = h_{ef} = h_{nom}$	VM-SH 12x80	12	80	80
ds	VM-SH 16x85	16	85	85
	VM-SH 20x85	20	85	85
L _s = h _{ef} = h _{nom}	VM-SH 16x130	16	130	130
ds	VM-SH 20x130	20	130	130
	VM-SH 20x200	20	200	200
t _{ef} = h _{nom} d _s Montage durch bis zu 20cm Wärmedämmung oder zur Durchsteckmontage	VM-SH 16x130/330 ¹⁾	16	330	130

¹⁾ Im Anhang C ist diese Siebhülse mit der VM-SH 16x130 abgedeckt

Injektionssystem VMU plus für Mauerwerk	
Produktbeschreibung Abmessungen der Ankerstangen und Siebhülsen	Anhang A6

Spezifizierung des Verwendungszwecks

Beanspruchung der	Statische und quasi-	statische Lasten	M8 – M16			
Verankerung	Brandeinwirkung		IG M6 – IG M10 (mit und ohne Siebhülse)			
	Zug- und Querlast					
Verankerungsgrund	Mauerwerksgruppe I	: Vollsteine	Anhang B 3			
	Mauerwerksgruppe	: Hohl- und Lochsteine	Anhang B 3 bis B 5			
	Mauerwerksgruppe	d: Porenbeton	Anhang B 3			
	Bei anderen Steinen Porenbeton darf die Baustellenversuche	in Vollsteinmauerwerk, Lo charakteristische Tragfähi entsprechend EOTA TR 0	ns M2,5 gemäß EN 998-2:2016 ochsteinmauerwerk oder in gkeit des Dübels durch 53, Fassung Juli 2022 unter C1, Tabelle C1 ermittelt werder			
Temperaturbereich	T _a : - 40°C bis +40°C (max. Kurzzeittemperatur +40°C und max. Langzeittemperatur +24°C) T _b : - 40°C bis +80°C (max. Kurzzeittemperatur +80°C und max. Langzeittemperatur +50°C) T _c : - 40°C bis +120°C (max. Kurzzeittemperatur +120°C und max. Langzeittemperatur +72°C)					
Bohrlocherstellung	Siehe Anhang C					
Anwendungsbedingungen (Umweltbedingungen):	Für alle anderen Bed	dingungen entsprechend E keitsklasse Tabelle A1 (ni	enräume (alle Materialien). EN 1993-1-4:2006+A2:2020 chtrostende und			
Nutzungsbedingungen	Bedingung d/d Bedingung w/w	Einbau und Verwendung	g in trockenem Mauerwerk g in trockenem oder nassem stallation in nassem Mauerwerk kenem Mauerwerk)			

Bemerkung: Der charakteristische Widerstand für Vollsteine und Porenbetonsteine gilt auch für größere Steindurchmesser und höhere Steindruckfestigkeiten.

Anhang B1

Spezifizierung des Verwendungszwecks

Bemessung:

- Unter Berücksichtigung des Mauerwerks im Verankerungsbereich, der zu verankernden Lasten und der Weiterleitung der Lasten sind prüfbare Berechnungen und Konstruktionszeichnungen anzufertigen. Auf den Konstruktionszeichnungen ist die Lage des Dübels anzugeben
- Die Bemessung der Verankerungen erfolgt gemäß EOTA TR 054, Fassung Juli 2022, unter der Verantwortung eines auf dem Gebiet der Verankerungen und des Mauerwerksbaus erfahrenen Ingenieurs
- · Gültig für alle Steine, falls keine anderen Werte spezifiziert sind:
 - NRk = NRk,b = NRk,p = NRk,b,c = NRk,p,c
 - V_{Rk} = V_{Rk,b} = V_{Rk,c,II} = V_{Rk,c,⊥}
- Für die Berechnung für das Herausziehen eines Steines unter Zugbeanspruchung NRk,pb oder das Herausdrücken eines Steines unter Querbeanspruchung VRk,pb siehe EOTA Technical Report TR 054, Fassung Juli 2022.
- NRk,s, VRk,s und M⁰Rk,s siehe Anhang C2 C4.
- Bei Anwendungen mit Siebhülse mit Bohrlochdurchmessern ≤15mm, installiert in nichtgefüllte Fugen:
 - NRk,p.j = 0,18 * NRk,p und NRk,b.j = 0,18 * NRk,b (NRk,p = NRk,b siehe Anhang C)
 - VRKcj = 0,15 * VRKc und VRKbj = 0,15 * VRKb (VRKb siehe Anhang C; VRkc siehe Anhang C5)
- Anwendungen ohne Siebhülse installiert in nichtgefüllte Fugen sind nicht erlaubt.

Einbau:

- Einbau durch entsprechend geschultes Personal unter Aufsicht des Bauleiters
- Bei Verwendung von Ankerstangen mit Innengewinde (VMU-IG bzw. VZ-IG) müssen Schrauben oder Gewindestangen (inkl. Mutter und Unterlegscheibe) dem Material und der Festigkeitsklasse der Ankerstange entsprechen.

Injektionssystem VMU plus für Mauerwerk

Verwendungszweck
Spezifikationen

Anhang B2

Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang	Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang
Porenbeton gemäß EN 771-4:2011+A1:2015				Leichtbetonvoll	stein gemäß EN	771-3:201	1+A1:	201	
AAC ρ = 0,35-0,60 ≥ 499x240x249		12x80 16x85 16x130 20x85 20x130 20x200	1=	C6 - C8	VBL ρ≥0,6 ≥240x300x113		12x80 16x85 16x130 20x85 20x130 20x200	-	C59
	Leicht	betonloch	stein	e gem	iß EN 771-3:2011+	A1:2015			
HBL 16DF ρ≥1,0 500x250x240		16x85 16x130 20x85 20x130 20x200	~	C55 - C56	Bloc creux B40 ρ ≥ 0,8 495x195x190	EEE	16x130 20x130	-	C5
-	Kal	ksandste	ine ge	emäß E	N 771-2:2011+A1:	2015			
KS-NF ρ ≥ 2,0 ≥ 240x115x71		12x80 16x85 16x130 20x85 20x130 20x200	~	C9 - C10	KSL-3DF ρ≥1,4 240x175x113	199	16x85 16x130 20x85 20x130		C1
KSL-8DF ρ ≥ 1,4 248x240x238		16x130 20x130 20x200	: ::-	C13 C14	KSL-12DF ρ≥1,4 498x175x238	1333	16x130 20x130	~	C1
		Vollziege	l gem	äß EN	771-1:2011+A1:20	15	14		
MZ-1DF ρ ≥ 2,0 ≥ 240x115x55		12x80 16x85 16x130 20x85 20x130 20x200	-	C17 C18	MZ – 2 DF ρ ≥ 2,0 ≥ 240x115x113		12x80 16x85 16x130 20x85 20x130 20x200	~	C19

Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Steintyp und Eigenschaften	Anhang B3

Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang	Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhano
		Lochzieg	el ger	näß EN	771-1:2011+A1	:2015			
HIz-10DF ρ ≥ 1,25 300x240x249		12x80 16x85 16x130 20x85 20x130 20x200	~	C22 C23	Porotherm Homebric ρ≥0,7 500x200x299		12x80 16x85 16x130 20x85 20x130	-	C2 - C2
BGV Thermo p ≥ 0,6 500x200x314		12x80 16x85 16x130 20x85 20x130		C26 C27	Brique creuse C40 ρ≥0,7 500x200x200		12x80 16x85 16x130 20x85 20x130	1	C3
Calibric R+ ρ ≥ 0,6 500x200x314		12x80 16x85 16x130 20x85 20x130	-	C28 C29	Blocchi Leggeri ρ≥0,6 250x120x250		12x80 16x85 16x130 20x85 20x130	-	CS
Urbanbric ρ ≥ 0,7 560x200x274		12x80 16x85 16x130 20x85 20x130	_	C30 C31	Doppio Uni ρ≥0,9 250x120x120	· i i i i i i i i i i i i i i i i i i i	12x80 16x85 16x130 20x85 20x130	-	C
	Lochzie	egel mit Wä	rmedä	mmun	g gemäß EN 771	-1:2011+A1:2015			
Coriso WS07 ρ ≥ 0,55 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	-	C38 - C39	T8P ρ ≥ 0,56 248x365x249 Perlite		12x80 16x85 16x130 20x85 20x130 20x200	-	C4
T7MW ρ ≥ 0,59 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	~	C40 - C42	MZ90-G ρ ≥ 0,68 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	1	C4

Injektionssystem VMU plus für Mauerwerk		
Verwendungszweck Steintyp und Eigenschaften	Anhang B4	

Fortsetzung Tabelle B1: Übersicht der Mauersteine und Eigenschaften

Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang	Bezeichnung Rohdichte [kg/dm³] Maße LxBxH [mm]	Foto	Siebhülse VM-SH	Brand- widerstände	Anhang
	Lochzieg	el mit Wär	medär	nmung	g gemäß EN 771-	1:2011+A1:2015			
Poroton FZ7,5 ρ ≥ 0,90 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	~	C47 C48	Poroton FZ9 p≥ 0,90 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	~	C49 - C50
Poroton S9 ρ ≥ 0,85 248x365x249 Perlite		12x80 16x85 16x130 20x85 20x130 20x200	-	C51 C52	Thermopor TV8+ ρ≥0,7 248x365x249 Mineralwolle		12x80 16x85 16x130 20x85 20x130 20x200	1	C53

Injektionssystem VMU plu	s für Mauerwerk
--------------------------	-----------------

Verwendungszweck Steintyp und Eigenschaften Anhang B5

Tabelle B2: Montagekennwerte für Porenbeton AAC und Vollstein (ohne Siebhülse) bei Vor- und Durchsteckmontage

Ankerstange			M8	M10 IG-M6	M12 IG-M8	M16 IG-M10		
Bohrernenndu	rchmesser do	[mm]	10	12	14	18		
Bohrlochtiefe	ho	[mm]		h _{ef} +	t _{fix} 1)			
Effektive Vera	nkerungstiefe he	[mm]	80	≥ 90	≥ 100	≥ 100		
Durchgangs-	Vorsteck- montage d _f ≤	[mm]	9	7 (IG-M6) 12 (M10)	9 (IG-M8) 14 (M12)	12 (IG-M10) 18 (M16)		
loch im Anbauteil	Durchsteck- montage dr≤	[mm]	12	14	16	20		
Reinigungsbü	rste	[-]	RB 10	RB 12	RB 14	RB 18		
Min. Bürstend	urchmesser d	[mm]	10,5	12,5	14,5	18,5		
Max. Montage	drehmoment Tins	[Nm]	siehe Anhang C					
Minimale Baut	teildicke h _{min}	[mm]	h _{ef} + 30					
Minimaler Ach	sabstand s _{mir}	[mm]	siehe Anhang C					
Minimaler Rar	ndabstand c _{min}	[mm]	siehe Anhang C					

¹⁾ Bei der Durchsteckmontage tfix berücksichtigen

Tabelle B3: Montagekennwerte in Voll- und Lochstein (mit Siebhülse) bei Vorsteckmontage

Ankerstange	M8	M8 / M10 IG-M6			M12 / M16 IG-M8 / IG-M10					
Siebhülse VM-SH			12x80	16x85	16x130	16x130 /330	20x85	20x130	20x200	
Bohrernenndurchmesser	d ₀	[mm]	12		16			20		
Bohrlochtiefe	ho	[mm]	85	90	135	330	90	135	205	
Effektive Verankerungstiefe	hef	[mm]	80	85	130	130	85	130	200	
Durchgangsloch im Anbauteil dr 5		[mm]	9	7 (IG-M6) 9 (M8) 12 (M10)			9 (IG-M8) 12 (IG-M10) 14 (M12) 18 (M16)			
Reinigungsbürste		[-]	RB 12	RB 16			RB 20			
Min. Bürstendurchmesser	db	[mm]	12,5	16,5				20,5		
Max. Montagedrehmoment	Tinst	[Nm]		siehe Anhang			g C			
Minimale Bauteildicke hmin			115	115	195	195	115	195	240	
Minimaler Achsabstand s _{min} [mm]			siehe Anhang C							
Minimaler Randabstand	Cmin	[mm]		siehe Anhang C						

Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Montagekennwerte	Anhang B6
Worldgekernwerte	

Tabelle B4: Montagekennwerte in Voll- und Lochstein (mit Siebhülse) bei Vorsteckmontage durch nichttragende Schichten und/oder Durchsteckmontage

Ankerstange			0.00000	/ M10 -M6	ACC 5 TOTAL	/ M16 / IG-M10
Siebhülse VM-SI	1		16x130	16x130/330	20x130	20x200
Bohrernenndurch	messer d ₀	[mm]		16		20
Bohrlochtiefe	ho	[mm]		h _{ef} + 5mm -	+ t _{nll} + t _{fix} 1)	
Effektive	Vorsteck- montage hef	[mm]	130	130	130	200
Verankerungs- tiefe	Durchsteck- montage her	[mm]	85	130	85	85
Maximale Dicke der nichttragenden Schicht max. t _{nll}		[mm]	45	200	45	115
Durchgangsloch im Anbauteil	Vorsteck- montage d₁≤	[mm]	7 (IG-M6) 9 (M8) 12 (M10)		9 (IG-M8) 12 (IG-M10) 14 (M12) 18 (M16)	
	Durchsteck- montage d _f ≤	[mm]	18		22	
Bürste		[-]	RB 16		RB 20	
Min. Bürstendurch	[mm]	16,5		20,5		
Max. Montagedre	[Nm]	siehe An		nhang C		
Minimale Bauteildicke h _{min}		[mm]	195 (115)	195	195 (115)	240 (115)
Minimaler Achsab	stand s _{min}	[mm]	siehe Anhang C			
Minimaler Randal	ostand c _{min}	[mm]		siehe An	hang C	

¹⁾ Bei nichttragenden Schichten und/oder Durchsteckmontage t_{fix} und/oder t_{nil} berücksichtigen.

Reinigungs- und Installationszubehör


Druckluftpistole (min 6 bar)

Reinigungsbürste RB

Handausblaspumpe (Volumen ≥ 750 ml)

Bürstenverlängerung

Injektionssystem VMU plus für Mauerwerk

Verwendungszweck

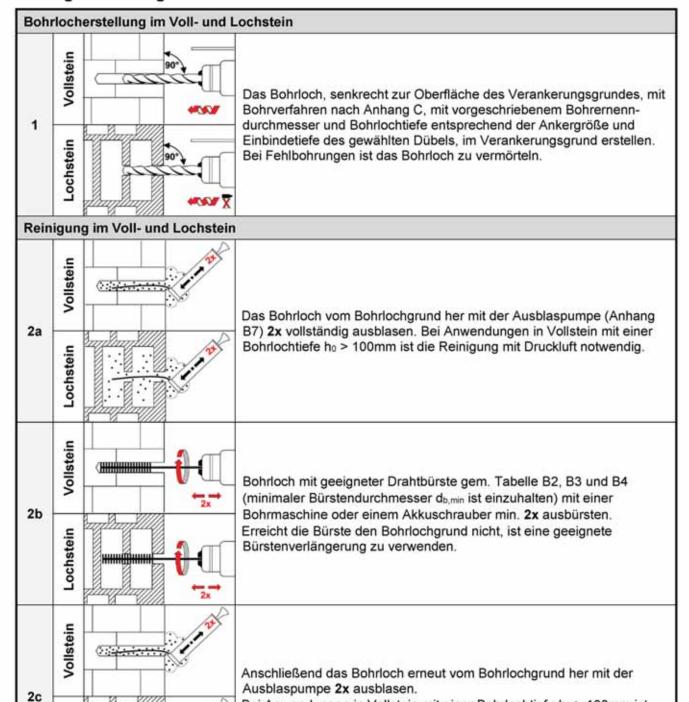
Montagekennwerte und Reinigungs- und Installationszubehör

Anhang B7

Tabelle B5: Verarbeitungs- und Aushärtezeiten - VMU plus

Tons		on the	Mandagala	Minimale A	ushärtezeit
The Control of Asset Control of C		Maximale Verarbeitungszeit	trockener Verankerungsgrund	feuchter Verankerungsgrund	
- 10°C	bis	- 6°C	90 min	24 h	48 h
- 5°C	bis	- 1°C	90 min	14 h	28 h
0°C	bis	+ 4°C	45 min	7 h	14 h
+ 5°C	bis	+ 9°C	25 min	2 h	4 h
+ 10°C	bis	+ 19°C	15 min	80 min	160 min
+ 20°C	bis	+ 29°C	6 min	45 min	90 min
+ 30°C	bis	+ 34°C	4 min	25 min	50 min
+ 35°C	bis	+ 39°C	2 min	20 min	40 min
à	+ 40°C		1,5 min	15 min	30 min
Kartusch	enten	peratur 1)	7.5	+5°C bis +40°C	

¹⁾ Bei Temperaturen im Verankerungsgrund von -10°C bis -6°C muss die Kartuschentemperatur mindestens +15°C betragen.


Tabelle B6: Verarbeitungs- und Aushärtezeiten - VMU plus Polar

Tomporatur im		Temperatur im Maximale		Minimale Aushärtezeit			
		sgrund	Verarbeitungszeit	trockener Verankerungsgrund	feuchter Verankerungsgrund		
- 20°C	bis	- 16°C	75 min	24 h	48 h		
- 15°C	bis	- 11°C	55 min	16 h	32 h		
- 10°C	bis	- 6°C	35 min	10 h	20 h		
- 5°C	bis	- 1°C	20 min	5 h	10 h		
0°C	bis	+4°C	10 min	2,5 h	5 h		
+5°C	bis	+9°C	6 min	80 min	160 min		
39	+ 10°C		6 min	60 min	2 h		
Kartusci	nente	mperatur		-20°C bis +10°C			

Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Verarbeitungs- und Aushärtezeit	Anhang B8

Montageanweisung

die Reinigung mit Druckluft notwendig

Bei Anwendungen in Vollstein mit einer Bohrlochtiefe ho > 100mm ist

Verwendungszweck

Lochstein

Montageanweisung: Bohrlochherstellung / Reinigung im Voll- und Lochstein

Anhang B9

Montageanweisung - Fortsetzung

Vort	pereitung Injektion	
3	IN ITE STATES	Den mitgelieferten Statikmischer fest auf die Kartuschen aufschrauben und Kartusche in eine geeignete Auspresspistole einlegen. Bei Schlauchfolien den Clip vor der Verwendung abschneiden. Bei jeder Arbeitsunterbrechung länger als die empfohlene Verarbeitungszeit (Tabelle B5 oder B6) und bei jeder neuen Kartusche ist der Statikmischer zu erneuern.
4	h _{ef} +(t _{nll})+(t _{fix})	Verankerungstiefe auf der Ankerstange markieren. Bei nichttragenden Schichten und/oder Durchsteckmontage tfix und/oder tnil berücksichtigen. Die Ankerstange muss frei von Schmutz-, Fett, Öl und anderen Fremdmaterialien sein.
5	min.3x	Mörtelvorlauf so lange auspressen (min. 3 volle Hübe, bei Schlauchfolien- gebinden 6 volle Hübe), bis der austretende Injektionsmörtel eine gleichmäßige graue Farbe aufweist. Dieser Vorlauf darf nicht verwendet werden.
Insta	Illation ohne Siebhülse	
6		Bohrloch vom Bohrlochgrund her mindestens 2/3 mit Verbundmörtel befüllen. Langsames Zurückziehen des Statikmischers aus dem Bohrloch verhindert die Bildung von Lufteinschlüssen. Falls erforderlich Mischerverlängerung verwenden. Die temperaturabhängigen Verarbeitungszeiten (Tabelle B5 bzw. B6) sind zu beachten.
7		Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einsetzen.
8		Nach der Installation des Ankers muss der Ringspalt zwischen Ankerstange und Mauerwerk, bei Durchsteckmontage zusätzlich auch im Anbauteil, komplett mit Mörtel ausgefüllt sein. Andernfalls Anwendung vor Beendigung der Verarbeitungszeit ab Schritt 6 wiederholen.
9	X	Aushärtezeit entsprechend Tabelle B5 bzw. B6 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden. Nach Ablauf der Aushärtezeit ausgetretenen Mörtel entfernen.
10	T _{inst,max}	Anbauteil mit Drehmomentschlüssel montieren, dabei das maximale Montagedrehmoment beachten (siehe Anhang C).

Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Montageanweisung: Vorbereitung Injektion / Installation ohne Siebhülse	Anhang B10

Montageanweisung - Fortsetzung

Inst	allation <u>mit</u> Siebhülse	
6		Siebhülse bündig mit der Oberfläche des Verankerungsgrundes in das Bohrloch einstecken. Siebhülse im Verankerungsbereich (her) niemals verändern. Bei Durchsteckmontage mit Siebhülse VM SH 16x130/330 durch eine nicht-tragende Schicht und/oder Anbauteil, darf der Klemmbereich auf die Dicke der nicht-tragenden Schicht und/oder Anbauteil gekürzt werden.
7		Die Siebhülse vom Grund her mit Mörtel füllen. Falls erforderlich Mischerverlängerung verwenden. Die exakte Mörtelmenge ist dem Kartuschenetikett oder der Montageanweisung zu entnehmen. Die temperaturabhängigen Verarbeitungszeiten in Tabelle B5 oder B6 sind zu beachten. Bei einer Durchsteckmontage muss die Siebhülse bis ins Anbauteil komplett mit Mörtel verfüllt sein.
8		Zur optimalen Verteilung des Mörtels, Befestigungselement mit leichten Drehbewegungen bis zur festgelegten Setztiefe einsetzen.
9	X	Aushärtezeit entsprechend Tabelle B5 bzw. B6 einhalten. Während der Aushärtezeit darf die Ankerstange nicht bewegt oder belastet werden.
10	T _{inst,max}	Anbauteil mit Drehmomentschlüssel montieren, dabei das maximale Montagedrehmoment beachten (siehe Anhang C).

Injektionssystem VMU plus für Mauerwerk	
Verwendungszweck Montageanweisung: Installation mit Siebhülse	Anhang B11

Tabelle C1: β - Faktoren für Baustellenversuche unter Zugbelastung

						β-Faktor			
Steintyp Porenbeton	Ankergröße	Siebhülse VM-SH	Veranke- rungs- tiefe					T _c : C/120°C	
			h _{ef}	d/d			100000000000000000000000000000000000000	d/d	w/d w/w
Porenbeton	alle Größen	mit oder ohne VM-SH	alle	0,95	0,86	0,81	0,73	0,81	0,73
Kalksand- steine d	d ₀ ≤ 14 mm	V/M CH	-11-	0,93	0,80	0,87	0,74	0,65	0,56
	d₀ ≥ 16 mm	VM-SH	alle	0,93	0,93	0,87	0,87	0,65	0,65
	d ₀ ≤ 14 mm		≤ 100mm	0,93	0,80	0,87	0,74	0,65	0,56
	d ₀ ≥ 16 mm	<u></u>	≤ 100mm	0,93	0,93	0,87	0,87 0,65	0,65	
	alle Größen		> 100mm	0,93	0,56	0,87	0,52	0,65	0,40
		VM-SH	alle	0,86	0,86	0,86	0,86	0,73	0,73
Ziegelsteine	alle Größen		≤ 100mm	0,86	0,86	0,86	0,86	0,73	0,73
		> 100mm	- > 100mm	0,86	0,43	0,86	0,43	0,73	0,37
Leichtbeton-	d ₀ ≤ 12 mm	mit oder ohne	-11-	0,93	0,80	0,87	0,74	0,65	0,56
steine	d₀ ≥ 16 mm	VM-SH	alle	0,93	0,93	0,87	0,87	0,65	0,65

Injektionssystem VMU plus für Mauerwerk	
Leistung β-Faktoren für Baustellenversuche unter Zugbelastung	Anhang C1

Tabelle C2: Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Ankerstangen

Ankerstan	ge			M 8	M 10	M 12	M 16	
Stahlversa	gen							
Spannungs	querschnitt	As	[mm²]	36,6	58,0	84,3	157	
Charakteri	stischer Widerstand unter Zugbean	spruchu	ng 1)					
102111212	Festigkeitsklasse 4.6 und 4.8	NRks	[kN]	15 (13) ¹⁾	23 (21)1)	34	63	
Stahl,	Festigkeitsklasse 5.6 und 5.8	NRks	[kN]	18 (17)1)	29 (27)1)	42	79	
verzinkt Nicht- rostender	Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	29 (27)1)	46 (43)1)	67	126	
Nicht- rostender Stahl	Festigkeitsklasse 50 (A2/A4/HCR)	N _{Rk,s}	[kN]	18	29	42	79	
	Festigkeitsklasse 70 (A2/A4/HCR)	N _{Rk,s}	[kN]	26	41	59	110	
	Festigkeitsklasse 80 (A4/HCR)	N _{Rk,s}	[kN]	29	46	67	126	
Teilsicherh	neitsbeiwert 2)				-			
Stahl,	Festigkeitsklasse 4.6 und 5.6	YMs,N	[-]		2,0	0		
verzinkt	Festigkeitsklasse 4.8, 5.8 und 8.8	YMs,N	[-]		1,	5		
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	YMs,N	[-]	2,86				
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	YMs,N	[-]	1,87 (1,5)3)				
Stahl	Festigkeitsklasse 80 (A4/HCR)	YMs,N	[-]		1,6 (1	,5) ³⁾		
Charakteri	stischer Widerstand unter Querbea	nspruch	ing 1)					
	gen ohne Hebelarm	-		0			71	
Stahl, verzinkt	Festigkeitsklasse 4.6 und 4.8	V ⁰ Rk,s	[kN]	7 (6)1)	12 (10)1)	17	31	
	Festigkeitsklasse 5.6 und 5.8	V ⁰ Rk,s	[kN]	9 (8)1)	15 (13)1)	21	39	
	Festigkeitsklasse 8.8	V ⁰ Rk,s	[kN]	15 (13)1)	23 (21)1)	34	63	
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	V ⁰ Rk,s	[kN]	9	15	21	39	
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	$V^0_{Rk,s}$	[kN]	13	20	30	55	
Stahl	Festigkeitsklasse 80 (A4/HCR)	$V^0_{Rk,s}$	[kN]	15	23	34	63	
Stahlversa	gen mit Hebelarm – Charakteristisc	her Bieg	ewiders	stand				
01-11	Festigkeitsklasse 4.6 und 4.8	M ⁰ Rk,s	[Nm]	15 (13) ¹⁾	30 (27)1)	52	133	
Stahl,	Festigkeitsklasse 5.6 und 5.8	M ⁰ Rk,s	[Nm]	19 (16)1)	37 (33)1)	65	166	
verzinkt	Festigkeitsklasse 8.8	M ⁰ Rk,s	[Nm]	30 (26)1)	60 (53)1)	105	266	
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	M ⁰ Rk,s	[Nm]	19	37	65	166	
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	M ⁰ Rk,s	[Nm]	26	52	92	233	
Stahl	Festigkeitsklasse 80 (A4/HCR)	M ⁰ Rk,s	[Nm]	30	60	105	266	
Teilsichert	neitsbeiwert 2)		-	-	14. 15.			
Stahl,	Festigkeitsklasse 4.6 und 5.6	γMs,V	[-]		1,6	7		
verzinkt	Festigkeitsklasse 4.8, 5.8 und 8.8	γMs,V	[-]		1,2	25		
Nicht-	Festigkeitsklasse 50 (A2/A4/HCR)	γMs,V	[-]		2,3	8		
rostender	Festigkeitsklasse 70 (A2/A4/HCR)	γMs,V	[-]		1,56 (1	,25)3)		
Stahl	Festigkeitsklasse 80 (A4/HCR)	YMs,V	[-]		1,33 (1	.25)3)		

Die charakteristischen Widerstände gelten für alle Ankerstangen mit dem hier angegebenen Spannungsquerschnitt As: VMU-A, V-A, VM-A. Für handelsübliche Gewindestangen mit geringerem Spannungsquerschnitt (z.B.: feuerverzinkte Gewindestangen M8, M10 gemäß EN ISO 10684:2004 + AC:2009) gilt der Wert in der Klammer.

³⁾ Wert in Klammern gilt nur für Ankerstangen VMU-A oder V-A

Injektionssystem VMU plus für Mauerwerk	
Leistung Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Ankerstangen	Anhang C2

² Sofern andere nationale Regelungen fehlen

Tabelle C3: Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Innengewindeankerstangen

Innengewindea	nkerstange			IG-M6	IG-M8	IG-M10		
Stahlversagen	1)							
Charakteristisc	her Widerstand unter Zugbeanspr	ruchung						
Stahl,	Festigkeitsklasse 5.8	NRKs	[kN]	10	17	29		
verzinkt	Festigkeitsklasse 8.8	N _{Rk,s}	[kN]	16	27	46		
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	N _{Rk,s}	[kN]	14	26	41		
Teilsicherheitsl	beiwert ²⁾			3				
Stahl,	Festigkeitsklasse 5.8	γMs,N	[-]	ı	1,5			
verzinkt	Festigkeitsklasse 8.8	γMs,N	[-]		1,5	1,5		
Nichtrostender Stahl	γMs,N	[-]	1,87					
Charakteristisc	her Widerstand unter Querbeansp	oruchung						
Stahlversagen	ohne Hebelarm				0			
Stahl,	Festigkeitsklasse 5.8	$V^0_{Rk,s}$	[kN]	5	9	15		
verzinkt	Festigkeitsklasse 8.8	$V^0_{Rk,s}$	[kN]	8	14	23		
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	V ⁰ Rk,s	[kN]	7	13	20		
Stahlversagen	<u>mit</u> Hebelarm – Charakteristischer	r Biegewid	erstand					
Stahl,	Festigkeitsklasse 5.8	M ⁰ Rk,s	[Nm]	8	19	37		
verzinkt	Festigkeitsklasse 8.8	M^0 Rk,s	[Nm]	12	30	60		
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	M ⁰ Rk,s	[Nm]	11	26	52		
Teilsicherheitsl	beiwert 2)							
Stahl,	Festigkeitsklasse 5.8	γMs,V	[-]		1,25			
verzinkt	Festigkeitsklasse 8.8	γMs,∨	[-]		1,25			
Nichtrostender Stahl	Festigkeitsklasse 70 (A4/HCR)	γms,∨	[-]		1,56			

¹⁾ Befestigungsschrauben oder Gewindestangen (inkl. Scheibe und Mutter) müssen mindestens der gewählten Festigkeitsklasse der Innengewindeankerstangen entsprechen. Die charakteristischen Tragfähigkeiten für Stahlversagen gelten für die Innengewindeankerstange und die zugehörigen Befestigungsmittel

Injektionssystem VMU plus für Mauerwerk	
Leistung Charakteristische Stahltragfähigkeit unter Zug- und Querbeanspruchung für Innengewindeankerstangen	Anhang C3

²⁾ Sofern andere nationale Regelungen fehlen

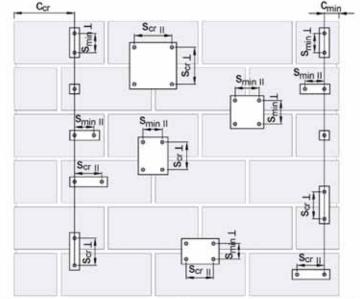
Tabelle C4: Ch	harakteristische :	Stahltragfähigkeit unter	Brandbeanspruchung
----------------	--------------------	--------------------------	--------------------

Ankerstange				M 8	M 10	M 12	M 16
Charakteristischer Widerstand unter	Zugbean	spruchu	ng				
OSC DADIGIDA HON BY STOLL SCIENCE, ANTICOP	R30	N _{Rk,s,fi}	[kN]	1,1	1,7	3,0	5,7
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	N _{Rk,s,fi}	[kN]	0,9	1,4	2,3	4,2
Nichtrostender Stahl (A2 / A4 / HCR) Festigkeitsklasse ≥ 50	R90	N _{Rk,s,fi}	[kN]	0,7	1,0	1,6	3,0
	R120	N _{Rk,s,fi}	[kN]	0,5	0,8	1,2	2,2
Charakteristischer Widerstand unter	Querbear	nspruchu	ıng				
Stahlversagen ohne Hebelarm							
	R30	V ⁰ Rk,s,fi	[kN]	1,1	1,7	3,0	5,7
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	V ⁰ Rk,s,fi	[kN]	0,9	1,4	2,3	4,2
Nichtrostender Stahl (A2 / A4 / HCR) Festigkeitsklasse ≥ 50	R90	V^0 Rk,s,fi	[kN]	0,7	1,0	1,6	3,0
. congressionation 2 of	R120	V ⁰ Rk,s,fi	[kN]	0,5	0,8	1,2	2,2
Stahlversagen mit Hebelarm - Chara	kteristisc	her Bieg	ewiderst	and			-
	R30	M ⁰ Rk,s,fi	[Nm]	1,1	2,2	4,7	12,0
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	M ⁰ Rk,s,fi	[Nm]	0,9	1,8	3,5	9,0
Nichtrostender Stahl (A2 / A4/ HCR) Festigkeitsklasse ≥ 50	R90	M ⁰ Rk,s,fi	[Nm]	0,7	1,3	2,5	6,3
	R120	M ⁰ Rk,s,fi	[Nm]	0,5	1,0	1,8	4,7
Teilsicherheitsbeiwert	alle	γMs,fi	[-]		1	,0	

Tabelle C5: Charakteristische Stahltragfähigkeit unter Brandbeanspruchung - Innengewindeankerstange

Innengewindeankerstange				IG-M6	IG-M8	IG-M10
Charakteristischer Widerstand unte	r Zugbeans	spruchur	g			
	R30	N _{Rk,s,fi}	[kN]	0,3	1,1	1,7
Stahl, Festigkeitsklasse 5.8 und 8.8; Nichtrostender Stahl (A4 / HCR) Festigkeitsklasse 70	R60	N _{Rk,s,fi}	[kN]	0,2	0,9	1,4
	R90	N _{Rk,s,fi}	[kN]	0,2	0,7	1,0
	R120	N _{Rk,s,fi}	[kN]	0,1	0,5	0,8
Charakteristischer Widerstand unte	r Querbear	spruchu	ng			1
Stahlversagen ohne Hebelarm	1945			,		v
	R30	V ⁰ Rk,s,fi	[kN]	0,3	1,1	1,7
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	V ⁰ Rk,s,fi	[kN]	0,2	0,9	1,4
Nichtrostender Stahl (A4 / HCR) Festigkeitsklasse 70	R90	V ⁰ Rk,s,fi	[kN]	0,2	0,7	1,0
r congrenoriasse 70	R120	V ⁰ Rk,s,fi	[kN]	0,1	0,5	0,8
Stahlversagen mit Hebelarm - Char	akteristisc	her Biege	widersta	nd		
THE PART OF THE PART OF SERVICE SERVICE	R30	M ⁰ Rk,s,fi	[Nm]	0,2	1,1	2,2
Stahl, Festigkeitsklasse 5.8 und 8.8;	R60	M ⁰ Rk,s,fi	[Nm]	0,2	0,9	1,8
Nichtrostender Stahl (A4 / HCR) Festigkeitsklasse 70	R90	M ⁰ Rk,s,fi	[Nm]	0,1	0,7	1,3
	R120	M ⁰ Rk,s,fi	[Nm]	0,1	0,5	1,0
Teilsicherheitsbeiwert	alle	YMs,fi	[-]		1,0	

Injektionssystem VMU plus für Mauerwerk	
Leistung	Anhang C4
Charakteristische Stahltragfähigkeit unter Brandbeanspruchung	



Rand- und Achsabstände = Charakteristischer Randabstand Cmin Minimaler Randabstand Charakteristischer Randabstand bei Ccr,fi Brandbeanspruchung = Charakteristischer (minimaler) Scr.II Achsabstand für Anker parallel zur (Smin,II) Lagerfuge angeordnet = Charakteristischer (minimaler) Scr.1 Achsabstand für Anker senkrecht zur (Smin_1) Lagerfuge angeordnet

= Charakteristischer Achsabstand unter

parallel (senkrecht) zur Lagerfuge

Brandbeanspruchung für Anker

Definition der Reduktions- und Gruppenfaktoren

angeordnet

Scr,fi,il

(Scr,fi,1)

Anker- anordnung	Zuglast	Querlast parallel zum freien Rand V _{II}	Querlast senkrecht zum freien Rand V⊥		
Anker parallel zur Lagerfuge scr.ll (smin.ll)	α _g II,N	α _{g II,V II}	V ••• α _{g II,V} 1		
Anker senkrecht zur Lagerfuge s _{cr⊥} (s _{min,⊥})	α _{g⊥,N}	∨	V • α _{g⊥,} ν _j		

Ctedge,N		Reduktionslaktor ber Zuglast am Helen Kand (Emzelanker)	(Iui cmin = c - ccr)
αedge,V⊥	=	Reduktionsfaktor bei Querlast senkrecht zum freien Rand (Einzelanker)	(für $c_{min} \le c < c_{cr}$)
αedge,V II	=	Reduktionsfaktor bei Querlast parallel zum freien Rand (Einzelanker)	(für $c_{min} \le c < c_{cr}$)
α _{g II,} N	=	Gruppenfaktor für Anker parallel zur Lagerfuge unter Zuglast	136 result of 116 to
$\alpha_{g\perp,N}$	=	Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Zuglast	
αg II,V II	=	Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast parallel zun	n freien Rand
$\alpha_{g\perp,VII}$	=	Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast parallel z	um freien Rand
100 mm - 100		사람이 그렇게 되어 있는데 얼마를 가면 하는데 얼마를 하면 하는데	

		NESS SECRETARIST CONTRACT SERVICES
αg⊥,V⊥	=	Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast senkrecht zum freien Rand
α _{g II} ,∨⊥	=	Gruppenfaktor für Anker parallel zur Lagerfuge unter Querlast senkrecht zum freien Rand
αg⊥,VII	=	Gruppenfaktor für Anker senkrecht zur Lagerfuge unter Querlast parallel zum freien Rand

Einzelanker am Rand:	NRKb,c VRK,c II VRK.c I	= $\alpha_{\text{edge,N}} * N_{\text{Rk,b}}$ = $\alpha_{\text{edge,V}} * V_{\text{Rk,b}} $ = $\alpha_{\text{edge,V}} * V_{\text{Rk,b}} $	bzw.	N _{Rk,p,c}	= α _{edge,N} * N _{Rk,p}		
Gruppe aus 2 Ankern	Ng _{Rk} Vg _{Rk} II Vg _{Rk,c} II	$= \alpha_{g,N} * N_{Rk,b}$ = $\alpha_{g,VII} * V_{Rk,b}$	bzw.	V ^g _{Rk⊥} V ^g _{Rk,c⊥}	$= \alpha_{g,V_{\perp}} * V_{Rk,b}$ = $\alpha_{g,V_{\perp}} * V_{Rk,b}$	$(f\ddot{u}r c ≥ c_{cr})$ $(f\ddot{u}r c ≥ c_{min})$	
Gruppe aus 4 Ankern	N ^g Rk V ^g Rk II	$= \alpha_g \parallel_N * \alpha_{g \perp_i} N * N_{Rk,b}$ $= \alpha_g \parallel_V \parallel * \alpha_{g \perp_i} V \parallel * V_{Rk,b}$ $= \alpha_g \parallel_V \parallel * \alpha_{g \perp_i} V \parallel * V_{Rk,b}$	bzw.	V ^g Rk⊥ V ^g Rk,c⊥	$= \alpha_g _{I,V_{\perp}}^* \alpha_{g_{\perp}},_{V_{\perp}}^* V_{Rk,b}$ $= \alpha_g _{I,V_{\perp}}^* \alpha_{g_{\perp}},_{V_{\perp}}^* V_{Rk,b}$	(für c ≥ c _{cr})	

Formeln abhängig von Ankeranordnung und Lastrichtung (siehe Tabelle oben). Reduktionsfaktoren, Gruppenfaktoren und Widerstände siehe Anhang C. Abminderung für Installation in Fugen siehe Anhang B1.

Injektionssystem VMU plus für Mauerwerk

Leistung

Definition der Rand- und Achsabstände und der Reduktions- und Gruppenfaktoren α

Anhang C5

Steintyp: Porenbetonstein AAC

Tabelle C6: Beschreibung

Steintyp	Porenbetonstein AAC		
Rohdichte	ρ	[kg/dm ³]	0,35 - 0,60
Normierte mittlere Druckfestigkeit	f _b ≥	[N/mm ²]	2, 4 oder 6
Norm		[-]	EN 771-4:2011+A1:2015
Hersteller (Länderkennu	ng)	[-]	z.B. Porit (DE)
Steinabmessungen		[mm]	≥ 499 x 240 x 249
Bohrverfahren		[-]	Drehbohren

Tabelle C7: Montagekennwerte

Ankergröße				M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Montagedrehmoment T _{inst} [Nm]					≤ 10	≤ 5	≤ 5	≤ 10	
Randabstand	Ccr	[mm]	150 (für Querlasten senkrecht zum freien Rand: cer =210)						210)	
Minimaler Randabstand	Cmin	[mm]	50							
A DECEMBER 2011	S _{cr,II}	[mm]		300						
Achsabstand	Scr.1	[mm]	250							
Minimulas Waterstand	Smin,II	[mm]	F0							
Minimaler Achsabstand	S _{min,1}	[mm]				50				

Tabelle C8: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	land		Querlast								
Zugi	ast		Senkrecht zu	m freien l	Parallel zum freien Rand						
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II			
		0.05		50	0,12		50	0,70			
	50	0,85		125	0,50		125	0,85			
	150	1,00		210	1,00		150	1,00			

Tabelle C9: Faktor für Ankergruppen

	Anordnung para	Anordnung senkrecht zur Lagerfuge					
		mit c ≥	mit s ≥	αg II,N	mitc≥ mits≥ αg⊥,N		
7		50	50	1,10	50 50 0,75		
Zuglast	••	150	50	1,25	150 50 0,90		
		150	300	2,00	150 250 2,00		
es no		mit c ≥	mit s ≥	αg II,V⊥	mit c≥ mit s≥ α _{gL} v		
Querlast		50	50	0,20	50 50 0,25		
senkrecht zum freien Rand		210	50	1,60	210 50 1,80		
zum meiem rama		210	300	2,00	210 250 2,00		
20 0 0		mit c ≥	mit s ≥	α _g II,V II	mit c≥ mit s≥ α _{g⊥} v		
Querlast		50	50	1,15	50 50 0,80		
parallel zum freien Rand		150	50	1,60	150 50 1,10		
		150	300	2,00	150 250 2,00		

Injektionssystem VMU plus für Mauerwerk Leistung - Porenbetonstein AAC Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren Anhang C6

Steintyp: Porenbetonstein AAC - Fortsetzung

Tabelle C10: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	e Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}						
		-sc	Nutzungsbedingungen									
Ankergröße	ıülse	Effektive Verankerungs- tiefe		d/d			w/d w/w		d/d w/d w/w			
	Siebhülse	Vera	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur bereiche			
		her			N _{Rk,b} = I	N _{Rk,p} 1)		100	V _{Rk,b} 1)			
		[mm]			[kN	١]		i i	[kN]			
Normierte mittle	ere Druckfes	tigkeit f _b ≥	2 N/mm ²			Rohdich	te ρ ≥ 0,3	5 kg/dm	3			
M8		80	1,2	0,9	0,9	0,9	0,9	0,9	1,5			
M10 / IG-M6	-	90	1,2	0,9	0,9	0,9	0,9	0,9	2,5			
M12 / M16 IG-M8 / IG-M10	-	100	2,0	1,5	1,5	1,5	1,5	1,5	2,5			
M8	VM-SH 12	80	1,2	0,9	0,9	0,9	0,9	0,9	1,5			
M8 / M10 IG-M6	VM-SH 16	≥ 85	1,2	0,9	0,9	0,9	0,9	0,9	2,5			
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	2,0	1,5	1,5	1,5	1,5	1,5	2,5			
Normierte mittle	ere Druckfes	tigkeit f _b ≥	4 N/mm ²			Rohdich	teρ≥0,5	0 kg/dm	3			
M8	. .	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5			
M10 / IG-M6	-	90	3,0	2,5	2,0	2,5	2,0	2,0	7,5			
M12 / M16 IG-M8 / IG-M10	-	100	5,0	4,5	4,0	4,5	4,0	4,0	7,5			
M8	VM-SH 12	80	3,0	2,5	2,0	2,5	2,0	2,0	4,5			
M8 / M10 IG-M6	VM-SH 16	≥ 85	3,0	2,5	2,0	2,5	2,0	2,0	7,5			
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	5,0	4,5	4,0	4,5	4,0	4,0	7,5			

 $^{^{1)}}$ $N_{Rk,b,c}$ = $N_{Rk,p,c}$ und $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ gemäß Anhang C5

Anhang C7

Steintyp: Porenbetonstein AAC - Fortsetzung

Charakteristische Widerstände - Fortsetzung:

Ankergröße		Sieb- Effektive	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr} Nutzungsbedingungen								
	Sieb-										
	hülse	Veranke- rungstiefe		d/d	0.0		w/d w/w		d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		hef			V _{Rk,b} 1)						
		[mm]		[kN]							
Normierte mit	tlere Druck	festigkeit fb	≥ 6 N/mm	3							
M8		80	4,0	3,5	3,0	3,5	3,0	3,0	6,0		
M10 / IG-M6	-	90	4,0	3,5	3,0	3,5	3,0	3,0	10,0		
M12 / M16 IG-M8 / IG-M10	-	100	7,0	6,0	5,5	6,5	5,5	5,5	10,0		
M8	VM-SH 12	80	4,0	3,5	3,0	3,5	3,0	3,0	6,0		
M8 / M10 IG-M6	VM-SH 16	≥ 85	4,0	3,5	3,0	3,5	3,0	3,0	10,0		
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	7,0	6,0	5,5	6,5	5,5	5,5	10,0		

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c ⊥ gemäß Anhang C5

Tabelle C11: Verschiebungen

Ankergröße	hef	δ _N / N	δινο	δ _N ⇔	δv/V	δνο	δv=	
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 2,8	2*δ _{Ν0}	0,3	0,3*V _{Rk} / 2,8	1,5*δνο	
M16	The state of the s				0,1	0,1*V _{Rk} /2,8		

Injektionssystem VMU plus für Mauerwerk

Leistungen - Porenbetonstein AAC
Charakteristische Widerstände und Verschiebungen

Anhang C8

Steintyp: Kalksandvollstein KS-NF

Tabelle C12: Beschreibung

Steintyp			Kalksandvollstein KS-NF
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Normierte mittlere Druckfestigkeit	f _b	[N/mm ²]	≥ 28
Umrechnungsfaktor für gerin Druckfestigkeiten	ngere	1	$(f_b / 28)^{0.5} \le 1.0$
Norm		[-]	EN 771-2:2011+A1:2015
Hersteller (Länderkennung)		[-]	z.B. Wemding (DE)
Steinabmessungen		[mm]	≥ 240 x 115 x 71
Bohrverfahren		[-]	Hammerbohren

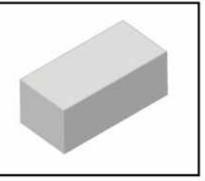


Tabelle C13: Montagekennwerte

Ankergröße	Ankergröße					M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 10	≤ 10	≤ 15	≤ 15	≤ 10	≤ 10	≤ 10
Randabstand (unter Brandbeanspruchung)	C _{cr} (C _{cr,fi})	[mm]	150 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)						
Minimaler Randabstand	Cmin	[mm]		-11-		60			
Achsabstand (unter	Scr.ll; (Scr.fi.ll)	[mm]				240 (4 h	er)		
Brandbeanspruchung)	Scr, L; (Scr, fi, L)	[mm]	150 (4 her)						
Minimaler Achsabstand	Smin,II; Smin,⊥	[mm]	75						

Tabelle C14: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zua	Zuglast			Querlast							
Zug	iast	senkrecht zum fro			Rand	parallel zum freien Rand					
+	mit c ≥	Cledge,N	+	mit c ≥	αedge,V⊥	+	mit c ≥	Ctedge,VII			
	60 ¹⁾	0,50		60	0,30		60	0,60			
•	1001)	0,50		100	0,50]	100	1,00			
	150 ¹⁾	1,00		240	1,00		150	1,00			
+	180	1,00	+	240	1,00	+	150	1,00			

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C15: Faktor für Ankergruppen

	Anordnung para	llel zur La	gerfuge		Anordnung sent	krecht zur	Lagerfu	ge
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
	+г	60 ¹⁾	75	0,70	1 +	60 ¹⁾	75	1,15
Zuglast	The second secon	150 ¹⁾	75	1,40		150¹)	75	2,00
	• •	150 ¹⁾	240	2,00	1	1501)	150	2,00
		1802)	75	1,00		1802)	75	1,15
		1802)	240	1,70	1	4002)	450	2.00
		2402)	240	2,00	1	1802)	150	2,00
Owner		mit c ≥	mit s ≥	α _g II,V⊥		mit c ≥	mit s ≥	α _{g⊥,V}
Querlast	1000	60	75	0,75		60	75	0,90
senkrecht		150	75	2,00		150	75	2,00
zum freien Rand		150	250	2,00		150	150	2,00
0		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αgLVII
Querlast parallel	100000	60	75	2,00		60	75	2,00
		150	75	2,00	1	150	75	2,00
zum freien Rand		150	250	2,00		150	150	2,00

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Injektionssystem VMU plus für Mauerwerk

Leistungen – Kalksandvollstein KS-NF

Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren

Anhang C9

Nur für Anwendungen mit hef = 200mm und ohne Siebhülse

Steintyp: Kalksandvollstein KS-NF – Fortsetzung

Tabelle C16: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}				
Antonouson	Ciale	Sieb- hülse Effektive Veranke- rungstiefe		Nutzungsbedingungen									
Ankergröße	12,110,120,134,134,0			d/d			w/d w/w		d/d w/d w/w				
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche				
		hef			N _{Rk,b} =	N _{RKp} 1)			V _{Rk,b} 1)				
		[mm]			[kl	V]			[kN]				
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	28 N/mm ²	2)						
M8		80	7,0	6,5	5,0	6,0	5,5	4,0	21				
M10 / IG-M6	20	≥ 90	7,0	6,5	5,0	6,0	5,5	4,0					
M12 / IG-M8		≥ 100	7,0	6,5	5,0	6,0	5,5	4,0					
M16 / IG-M10		≥ 100	7,0	6,5	5,0	7,0	6,5	5,0	1				
M10 - M16 IG-M6 - IG-M10		200	9,0	8,5	6,5	5,5	5,0	4,0	7,0				
M8	VM-SH 12	80	7,0	6,5	5,0	6,0	5,5	4,0					
M8 / M10/ IG-M6	VM-SH 16	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0					
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	7,0	6,5	5,0	7,0	6,5	5,0					

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|I} = V_{Rk,c\perp}$ gemäß Anhang C5

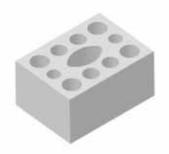
Tabelle C17: Verschiebungen

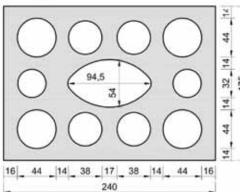
Ankergröße	h _{ef}	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _{N∞} [mm]	δv / V [mm/kN]	δνο [mm]	δv∞ [mm]	
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δηο	0,3	0,3*V _{Rk} /3,5	1,5*δνο	
M16	TO IN TO	22	V		0,1	0,1*V _{Rk} /3,5	100 200	

Tabelle C18: Charakteristische Widerstände unter Brandbeanspruchung

	Sieb- hülse	Effektive Veranke- rungstiefe			scher Widerstand N _{Rk,p,fi} = V _{Rk,b,fi}			
		her	R30	R60	R90	R120		
		[mm]	[kN]					
M8	121	80						
M10 / IG-M6	*	≥ 90	0.40	0,41	0.24	0.20		
M12 / IG-M8	-	≥ 100	0,48		0,34	0,30		
M16 / IG-M10	126	≥ 100						
M8	VM-SH 12	80						
M8 / M10 / IG-M6	VM-SH 16	≥ 85	0,47	0,26	keine Leistung	keine Leistung		
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	0,47	0,26	bewertet	bewertet		

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandvollstein KS-NF	Anhang C10
Charakteristische Widerstände, Verschiebungen, Brandbeanspruchung	


Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C12 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Kalksandlochstein KSL-3DF

Tabelle C19: Beschreibung

Steintyp	Kalksandlochstein KSL-3DF		
Rohdichte	ρ [kg/dm³]	≥ 1,4	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 14	
Umrechnungsfaktor für gerin Druckfestigkeiten	gere	$(f_b / 14)^{0.75} \le 1.0$	
Norm	[-]	EN 771-2:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. KS-Wemding (DE)	
Steinabmessungen	[mm]	≥ 240 x 175 x 113	
Bohrverfahren	[-]	Drehbohren	

Tabelle C20: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤5	≤ 5	≤8	≤8	≤ 5	≤8	≤ 8
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 240)					240)	
Minimaler Randabstand	Cmin	[mm]	60						
Ashashatand	Scr. II	[mm]	240						
Achsabstand	Scr, ⊥	[mm]	120						
Minimaler Achsabstand	Smin, II; Smin, ±	[mm]	120						

Tabelle C21: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast			Querlast							
Zug	iast		senkrecht zu	m freien l	Rand	parallel zum freien Rand					
	mit c ≥	Cledge,N		mit c ≥	Cledge,V1		mit c ≥	Ctedge,VII			
•	60	1,00		60	0,30		60	1,00			
	120	1,00		240	1,00		120	1,00			

Injektionssystem VMU plus für Mauerwerk

Leistungen – Kalksandlochstein KSL-3DF
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C11

Steintyp: Kalksandlochstein KSL-3DF – Fortsetzung

Tabelle C22: Faktor für Ankergruppen

	Anordnung senk	recht zur	Lagerfug	je				
Î		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
Zualant		60	120	1,50		60	120	1,00
Zuglast		120	120	2,00	•	60	120	1,00
		120	240	2,00		120	120	2,00
0 1 1		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
Querlast		60	120	0,30		60	120	0,30
senkrecht zum freien Rand	land and	120	120	1,00		60	120	0,30
Zum neien Kanu		120	240	2,00		240	120	2,00
		mit c ≥	mit s ≥	α _g , V		mit c ≥	mit s ≥	α _{g⊥,VII}
Querlast		60	120	1,00		60	120	1,00
parallel zum freien Rand		120	120	1,60		60	120	1,00
Zum neien Kanu		120	240	2,00		120	120	2,00

Tabelle C23: Charakteristische Widerstände unter Zug- und Querlast

			(Charakter	istische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}		
Ankergröße	Sieb-	Sieb- Effektive		Nutzungsbedingungen							
hülse	hülse	Veranke- rungs- tiefe	d/d			w/d w/w			d/d w/d w/w		
		24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		hef	$N_{Rk,b} = N_{Rk,p}^{-1}$					V _{Rk,b} 1)			
		[mm]	[kN]					[kN]			
		Normierte i	mittlere D	ruckfesti	gkeit f _b ≥	14 N/mm	2 2)		24		
M8 / M10		≥ 85	2,5	2,5	1,5	2,5	2,5	1,5			
IG-M6	VM-SH 16	VM-SH 16	130	2,5	2,5	2,0	2,5	2,5	2,0		
M12 / M16 IG-M8 IG-M10	VM-SH 20	≥ 85	6,5	6,0	4,5	6,5	6,0	4,5	6,0		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | II} = V_{Rk,c} \perp$ gemäß Anhang C5

Tabelle C24: Verschiebungen

Ankararäßa	hef	δ _N / N	δινο	δn∞	δv / V	δνο	δv=
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			0,10,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	2.010	0,31	0,31*V _{Rk} /3,5	1,000

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandlochstein KSL-3DF	Anhang C12
Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C19 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Kalksandlochstein KSL-8DF

Tabelle C25: Beschreibung

Steintyp	Kalksandlochstein KSL-8DF	
Rohdichte ρ [kg/dm³]	≥ 1,4	
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 12)^{0.75} \le 1.0$	
Norm [-]	EN 771-2:2011+A1:2015	A APPROXIMATE AND A SECOND SEC
Hersteller (Länderkennung) [-]	z.B. KS-Wemding (DE)	(
Steinabmessungen [mm]	≥ 248 x 240 x 238	
Bohrverfahren [-]	Drehbohren	
	63 63 64 60 67 67 67 67 67 67 67	

Tabelle C26: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤ 5	≤ 8	≤ 8	≤ 5	≤8	≤ 8	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 250)					= 250)		
Minimaler Randabstand	Cmin	[mm]	50							
Ashashataad	Scr. II	[mm]	250							
Achsabstand	Scr. 1	[mm]	120							
Minimaler Achsabstand	S _{min} , II	[mm]	50							

Tabelle C27: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	lant		Querlast						
Zug	iast		senkrecht zum freien Rand parallel zum freie				freien R	en Rand	
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Ctedge,VII	
•	50	1,00		50	0,30		50	1,00	
	120	1,00		250	1,00	*	120	1,00	

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandlochstein KSL-8DF	Anhang C13
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	

Steintyp: Kalksandlochstein KSL-8DF - Fortsetzung

Tabelle C28: Faktor für Ankergruppen

	Anordnung para	Anordnung sen	krecht zu	r Lagerfu	ge			
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N
Zuglast		50	50	1,00		50	50	1,00
		120	250	2,00		120	120	2,00
20 0.0		mit c ≥	mit s ≥	αg II,V⊥	T	mit c ≥	mit s ≥	ασΙ.VΙ
Querlast		50	50	0,45		50	50	0,45
senkrecht zum freien Rand		250	50	1,15		250	50	α _{g1,V1} 0,45 1,20 2,00
zum neien kand		250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	α _g II,V II		mit c ≥	mit s ≥	αστ,ν ΙΙ
parallel zum freien Rand		50	50	1,30	1	50	50	1,00
		120	250	2,00		120	250	2,00

Tabelle C29: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}								
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen								
hülse		d/d			w/d w/w			d/d w/d w/w			
		24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		hef	N _{Rk,b} = N			N _{Rk,p} 1)	V _{Rk,b} 1)				
		[mm]			[kl	٧]			[kN]		
		Normierte	mittlere D	ruckfesti	gkeit f₀ ≥	12 N/mm	2 2)				
M8 / M10 IG-M6	VM-SH 16	130	5,0	4,5	3,5	5,0	4,5	3,5	3,5		
M12 / M16 IG-M8 IG-M10	VM-SH 20	≥ 130	5,0	4,5	3,5	5,0	4,5	3,5	6,0		

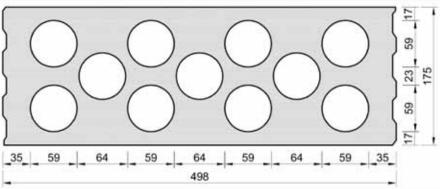
¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c||} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C30: Verschiebungen

Ankorarößo	hef	δ _N / N	διο	δn=	δ _V /V	δνο	δν∞	
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δησ	0,55	0,55*V _{Rk} /3,5	1,5*δνο	
M16	- 9995	1800	E165001111015151		0,31	0,31*V _{Rk} /3,5		

Injektionssystem VMU plus für Mauerwerk	
Leistungen - Kalksandlochstein KSL-8DF	Anhang C14
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	55255

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C25 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Kalksandlochstein KSL-12DF

Tabelle C31: Beschreibung

Steintyp	Kalksandlochstein KSL-12DF		
Rohdichte	ρ [kg/dm³]	≥ 1,4	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für gering Druckfestigkeiten	$(f_b / 12)^{0.75} \le 1.0$		
Norm	[-]	EN 771-2:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. KS-Wemding (DE)	
Steinabmessungen	[mm]	≥ 498 x 175 x 238	
Bohrverfahren	[-]	Drehbohren	

Tabelle C32: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 4	≤ 4	≤ 5	≤ 5	≤4	≤ 5	≤ 5
Randabstand (unter Brandbeanspruchung)	C _{cr} (C _{cr,fi})	[mm]	m] 120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)					500)	
Minimaler Randabstand	C _{min}	[mm]	50						
Achsabstand (unter	Scr,II (Scr,fi,II)	[mm]	500 (4 h _{ef})						
Brandbeanspruchung)	Scr, L (Scr, fi, L)	[mm]	120 (4 her)						
Minimaler Achsabstand	Smin,II; Smin,⊥	[mm]	50						

Tabelle C33: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast						
			senkrecht zu	m freien l	Rand	parallel zum freien Rand			
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II	
•	50	1,00		50	0,45		50	1,00	
	120	1,00		500	1,00		120	1,00	

Injektionssystem VMU plus für Mauerwerk	
Leistung Kalksandlochstein KSL-12DF	Anhang C15
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	

Steintyp: Kalksandlochstein KSL-12DF – Fortsetzung

Tabelle C34: Faktor für Ankergruppen

	Anordnung para	llel zur La	gerfuge		Anordnung sen	krecht zu	r Lagerfu	ge
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥,N
Zuglast	• •	50	50	1,50		50	50	1,00
02233000		120	500	2,00		120	240	2,00
	+	mit c ≥	mit s ≥	αg II,V⊥	+	mit c ≥	mit s ≥	αд⊥,V⊥
Querlast	100000	50	50	0,55		50	50	0,50
senkrecht zum freien Rand		500	50	1,00		500	50	1,00
Zum meien Kanu		500	500	2,00	1	500	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	ασμνιι
parallel		50	50	2,00		50	50	1,30
zum freien Rand		120	500	2,00		120	250	2,00

Tabelle C35: Charakteristische Widerstände unter Zug- und Querlast

			-	Charakte	ristische	Widers	tände be	ic≥c _{cr} u	nd s ≥ s _{cr}			
A	Ciah	F66-1-41		Nutzungsbedingungen								
Ankergröße	Sieb- hülse Veranke- rungs-		d/d			w/d w/w			d/d w/d w/w			
		tiefe	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche			
		her			N _{Rk,b} =	N _{Rk,p} 1)		V _{Rk,b} 1)				
		[mm]			[k	N]			[kN]			
	3	Normierte i	mittlere l	Druckfes	tigkeit fb	≥ 12 N/n	nm² ²)					
M8 / M10 IG-M6	VM-SH 16	130	3,5	3,5	2,5	3,5	3,5	2,5	3,5			
M12 / M16 IG-M8 /IG-M10	VM-SH 20	≥ 130	3,5	3,5	2,5	3,5	3,5	2,5	7,0			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

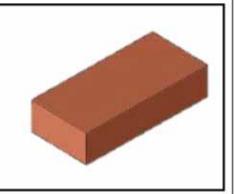
Tabelle C36: Verschiebungen

Ambaumu#Oa	her	δ _N / N	δινο	δ _{N=}	δv/V	δνο	δv≈
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16		1.000000		10035015	0,31	0,31*V _{Rk} /3,5	

Tabelle C37: Charakteristische Widerstände unter Brandbeanspruchung

	Sieb- hülse	Effektive Verankerungstiefe	C	Charakteristisc N _{Rk,b,fi} = N _R	her Widerst k,p,fi = VRk,b,fi	and
Ankergröße	PANE (1) (2) (1)	hef	R30	R60	R90	R120
		[mm]		[k	N]	
M8/M10/IG-M6	VM-SH 16	130	The state of the s		1250	keine Leistung
M12/ IG-M8	VM-SH 20	≥ 130	0,37	0,27	0,17	bewertet
M16/IG-M10	VM-SH 20	≥ 130				0,12

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Kalksandlochstein KSL-12DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C16


²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C31 multipliziert werden. Für Steine mit h\u00f6heren Festigkeiten sind die angegebenen Werte ohne Umrechnung g\u00fcltig.

Steintyp: Mauerziegel MZ-1DF

Tabelle C38: Beschreibung

Steintyp	Mauerziegel MZ-1DF		
Rohdichte	ρ	[kg/dm ³]	≥ 2,0
Normierte mittlere Druckfestigkeit	fb	[N/mm ²]	≥ 20
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	е	$(f_b / 20)^{0.5} \le 1.0$
Norm		[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennun	g)	[-]	z.B. Wienerberger (DE)
Steinabmessungen		[mm]	≥ 240 x 115 x 55
Bohrverfahren		[-]	Hammerbohren

Tabelle C39: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Randabstand	Ccr	[mm]	150 (für Querlasten senkrecht zum freien Rand: ccr = 240)				= 240)		
Minimaler Randabstand	Cmin	[mm]	60				100		
Ashashatand	Scr,II	[mm]	240						
Achsabstand	S _{cr,⊥}	[mm]				130			
Minimaler Achsabstand	Smin,II; Smin,⊥	[mm]	65						

Tabelle C40: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	lant			Querlast					
Zug	Zuglast			m freien l	Rand	parallel zum freien Rand			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII	
	60	0,75	-	60	0,10		60	0,30	
	150	1,00		100	0,50	I I I I	100	0,65	
	180	1,00		240	1,00		150	1,00	

Tabelle C41: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senkrecht zur Lagerfuge			
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	$\alpha_{g\perp,N}$
Zumlant		60	65	0,85		60	65	1,00
Zuglast	• •	150	65	1,15		150	65	1,20
		150	240	2,00		150	130	2,00
2		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	ασι,νι
Querlast		60	65	0,40		60	65	0,30
senkrecht zum freien Rand		240	65	2,00		240	65	2,00
zum meiem rama		240	240	2,00		240	130	2,00
2000		mit c ≥	mit s ≥	α _g , ν		mit c ≥	mit s ≥	αστίνιι
Querlast	100 001	60	65	1,75		60	65	1,10
parallel zum freien Rand	•••	150	65	2,00	1 📗 🇯	150	65	2,00
Zum neien Kanu		150	240	2,00		150	130	2,00

Injektionssystem VMU plus für Mauerwerk

Leistungen - Mauerziegel MZ-1DF

Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C17

Steintyp: Mauerziegel MZ-1DF - Fortsetzung

Tabelle C42: Charakteristische Widerstände unter Zug- und Querlast

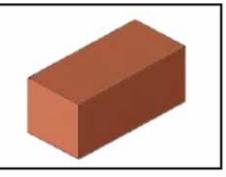
			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive			Nutzı	ıngsbedi	ngunger	1	
	hülse	hülse Veranke- rungstiefe		d/d			w/d w/w	d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		her		51	N _{Rk,b} =	N _{Rk,p} 1)	00		V _{Rk,b} 1)
		[mm]			[kt	١]			[kN]
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	20 N/mm ²	2)	um.	
M8	-	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0
M10 / IG-M6	-	≥ 90	7,0	6,0	6,0	7,0	6,0	6,0	8,0
M12 / IG-M8	-	≥ 100	7,0	6,0	6,0	7,0	6,0	6,0	8,0
M16 / IG-M10	-	≥ 100	8,0	6,5	6,5	8,0	6,5	6,5	12,0
M8	VM-SH 12	80	7,0	6,0	6,0	7,0	6,0	6,0	8,0
M8 / M10 IG-M6	VM-SH 16	≥ 85	7,0	6,0	6,0	7,0	6,0	6,0	8,0
M12 IG-M8	VM-SH 20	≥ 85	7,0	6,0	6,0	7,0	6,0	6,0	8,0
M16 IG-M10	VM-SH 20	≥ 85	8,0	6,5	6,5	8,0	6,5	6,5	12,0

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c ⊥ gemäß Anhang C5

Tabelle C43: Verschiebungen

Ankergröße	her	δη / Ν	δινο	δn=	δv/V	δνο	δν≕	
WOOD WOOD COLL	[mm] [[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 - M12 / IG-M6 - IG-M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δηο	0,3	0,3*V _{Rk} /3,5	1,5*δνο	
M16			1,0		0,1	0,1*V _{Rk} /3,5	.,,	

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Mauerziegel MZ-1DF	Anhang C18
Charakteristische Widerstände und Verschiebungen	2011


²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C38 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Mauerziegel MZ-2DF

Tabelle C44: Beschreibung

Steintyp		Mauerziegel MZ-2DF
Rohdichte	ρ [kg/dm³]	≥ 2,0
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 28
Umrechnungsfaktor für ger Druckfestigkeiten	ringere	$(f_b / 28)^{0.5} \le 1.0$
Norm	[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung) [-]	z.B. Wienerberger (DE)
Steinabmessungen	[mm]	≥ 240 x 115 x 113
Bohrverfahren	[-]	Hammerbohren

Tabelle C45: Montagekennwerte

Ankergröße		M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10	≤ 10
Randabstand (unter Brandbeanspruchung)	C _{cr} (C _{cr,fi})	[mm]	150 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 240						240)
Minimaler Randabstand	Cmin	[mm]	***		DAL SHIP THOUGH	50		***************************************	
Achsabstand (unter	Scr.II (Scr.fi,II)	[mm]				240 (4 h	ef)		
Brandbeanspruchung)	Scr, ± (Scr, fi, ±)	(S _{cr,fi,⊥}) [mm] 240 (4 h _{ef})							
Minimaler Achsabstand	Smin,II; Smin,⊥		50						

Tabelle C46: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	Zuglast			Querlast							
Zug	iast		senkrecht zu	m freien R	Rand	parallel zum freien Rand					
	mit c ≥	Cledge,N		mit c ≥	Ctedge,V⊥		mit c ≥	Cledge,VII			
	50 ¹⁾	1,00		50	0,20		1/22/17	Topical Law			
	150 ¹⁾	1,00		125	0,50		50	1,00			
	150	1,00		240	1,00		150	1,00			

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Tabelle C47: Faktor für Ankergruppen

	Anordnung paral	Anordnung senk	recht zu	r Lagerfu	ge			
	7 4 4 4 4 4	mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥N
		50 ¹⁾	50	1,50		50 ¹⁾	50	0,80
7	19191	150 ¹⁾	240	2,00		150 ¹⁾	240	2,00
Zuglast		1802)	60	1,00		1802)	60	1,00
		1802)	240	1,55		1802)	120	2,00
		2402)	240	2,00		1802)	120	2,00
	†r	mit c ≥	mit s ≥	α _{g II,V} ⊥	4	mit c ≥	mit s ≥	ασι,νι
Querlast		50	50	0,40		50	50	0,20
senkrecht		240	50	1,20	-	240	50	0,60
zum freien Rand		240	240	2,00		240	125	1,00
		240	240	2,00	+	240	240	2,00
Overdent		mit c ≥	mit s ≥	α _g II,V II		mit c ≥	mit s ≥	αgL,VII
Querlast parallel		50	50	1,20		50	50	1,00
zum freien Rand		150	240	2,00		50	125	1,00
Zum neien Kanu		150	240	2,00		150	240	2,00

¹⁾ Alle Anwendungen, außer bei hef = 200mm und ohne Siebhülse

Injektionssystem VMU plus für Mauerwerk

Leistungen - Mauerziegel MZ-2DF

Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren

Anhang C19

²⁾ Nur für Anwendungen mit hef = 200mm und ohne Siebhülse

Steintyp: Mauerziegel MZ-2DF - Fortsetzung

Tabelle C48: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive		1					
	hülse	Veranker ungs- tiefe		d/d			w/d w/w		d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		hef	N _{Rk,b} = N _{Rk,p} 1)				V _{Rk,b} 1)		
		[mm]			[kl	N]			[kN]
	N	ormierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	28 N/mm ²	2)		
M8	-	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M10 / IG-M6	-	≥ 90	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M12 / IG-M8	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12,0
M16 / IG-M10	-	≥ 100	9,0	9,0	7,5	9,0	9,0	7,5	12,0 3)
M10 / M12 IG-M6 / IG-M8	-	200	11,5	11,5	10,0	6,0	6,0	5,0	8,0
M16 / IG-M10	-	200	11,5	11,5	10,0	6,0	6,0	5,0	12,0
M8	VM-SH 12	80	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M8 / M10 IG-M6	VM-SH 16	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	9,5
M12 / IG-M8	VM-SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0
M16 / IG-M10	VM-SH 20	≥ 85	9,0	9,0	7,5	9,0	9,0	7,5	12,0 3)

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|l} = V_{Rk,c\perp}$ gemäß Anhang C5

3) Gültig für alle Steinfestigkeitsklassen bis min. 10 N/mm²

Tabelle C49: Verschiebungen

Ankoraröße	her	δ _N / N	διο	δn	δv / V	δνο	δv
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,1	0,1*N _{Rk} / 3,5	2*δηο	0,3	0,3*V _{Rk} /3,5	1,5*δνο
M16					0,1	0,1*V _{Rk} /3,5	1

Injektionssystem VMU plus für Mauerwerk

Leistung - Mauerziegel MZ-2DF
Charakteristische Widerstände und Verschiebungen

Anhang C20

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C44 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C50: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe			her Widerstand k,p,fi = V _{Rk,b,fi}	
	0	hef	R30	R60	R90	R120
		[mm]		[k	N]	
M8	1.2	80				
M10 / IG-M6		≥ 90	0.54	0.44	0.20	0.00
M12 / IG-M8	(4)	≥ 100	0,51	0,44	0,36	0,33
M16 / IG-M10		≥ 100				
M8	VM-SH 12	80	0,36	0,26	0,15	0,10
MO / MAO / IC MO	VAA CU 46	≥ 85	0,36	0,26	0,15	0,10
M8 / M10 / IG-M6 VM-SH M12 / M16 IG-M8 / IG-M10 VM-SH	VM-SH 16	130	0,92	0,74	0,57	0,49
	VAA CH 20	≥ 85	0,36	0,26	0,15	0,10
	VIVI-5H 20	≥ 130	0,92	0,74	0,57	0,49

Injektionssystem VMU plus für Mauerwerk

Leistungen – Mauerziegel MZ-2DF

Charakteristische Widerstände unter Brandbeanspruchung

Anhang C21

Steintyp: Hochlochziegel Hlz-10 DF

Tabelle C51: Beschreibung

Steintyp		Hochlochziegel HIz-10 DF	
Rohdichte	ρ [kg/dm³]	≥ 1,25	
Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 20	
Umrechnungsfaktor für ge Druckfestigkeiten	eringere	$(f_b / 20)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennun	g) [-]	z.B. Wienerberger (DE)	The state of the s
Steinabmessungen	[mm]	300 x 240 x 249	The state of the s
Bohrverfahren	[-]	Drehbohren	
	28 13	300	

Tabelle C52: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤ 10	≤ 10	≤ 10	≤5	≤5	≤ 10
Randabstand (unter Brandbeanspruchung)	C _{cr.} (C _{cr.fi})	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 300)					300)	
Minimaler Randabstan	id c _{min}	[mm]						10704	
Achsabstand (unter	Scr.II (Scr.fi,II)	[mm]	300 (4 het)						
Brandbeanspruchung)	Scr,⊥ (Scr,fi,⊥)	[mm]				250 (4 h	ef)		
Minimaler Achsabstand	Smin,II; Smin,⊥	[mm]	nm] 50						

Tabelle C53: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7110	Zuglast			Querlast							
Zug	idol	,	senkrecht zu	m freien l	Rand	parallel zum freien Rand					
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII			
•	50	1,00		50	0,20	1	50	1,00			
	120	1,00		300	1,00		120	1,00			

Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Hlz-10 DF
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C22

Steintyp: Hochlochziegel Hlz-10 - Fortsetzung

Tabelle C54: Faktor für Ankergruppen

e :	Anordnung para	allel zur La	gerfuge	-	Anordnung se	nkrecht zu	r Lagerfu	ge
		mit c ≥	mit s ≥	CLg II,N		mit c ≥	mit s ≥	α _g L,N
Zuglast	••	50	50	1,55		50	50	1,00
		120	300	2,00		120	250	2,00
Overdent		mit c ≥	mit s ≥	αgII,VI		mit c ≥	mit s ≥	α _{g1,V1}
Querlast	70000	50	50	0,30		50	50	0,20
senkrecht	•••	300	50	1,40		300	50	1,00
zum freien Rand		300	300	2,00		300	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	ασΣ۷ΙΙ
parallel		50	50	1,85	1 1	50	50	1,00
zum freien Rand		120	300	2,00		120	250	2,00

Tabelle C55: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Ciab	Effektive		07					
Allinetgrobe	hülse Verank	11/11/2009 (2000) (2000)		d/d	J. J	w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		her	$N_{Rk,b} = N_{Rk,p}^{-1}$ [kN]						V _{Rk,b} 1)
		[mm]							[kN]
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	20 N/mm ²	2)		2.0-21.2
M8	VM-SH 12	80	2,5	2,5	2,0	2,5	2,5	2,0	8,0
M8 / M10 /IG-M6	VM-SH 16	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	8,0
M12 / IG-M8	VM-SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	8,0
M16 / IG-M10	VM-SH 20	≥ 85	5,0	5,0	4,5	5,0	5,0	4,5	11,5

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c ± gemäß Anhang C5

Tabelle C56: Verschiebungen

Ankergröße	h _{ef} [mm]	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _{N™} [mm]	δv / V [mm/kN]	δ _{V0} [mm]	δν- [mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13 0,13*N _{Rk} / 3,5	Water Print Will Co. Caroli Coat	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			8		0,31	0,31*V _{Rk} /3,5	

Tabelle C57: Charakteristische Widerstände unter Brandbeanspruchung

Sieb- hülse Ankergröße		Effektive Veranke- rungstiefe		Charakteristisc N _{Rk,b,fi} = N _R		
	her	R30	R120			
		[mm]		[k	N]	
M8 / M10 / IG-M6	VM-SH 16	130				
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 130	0,57	0,39	0,21	0,12

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Hlz-10 DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C23

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C51 multipliziert werden. Für Steine mit h\u00f6heren Festigkeiten sind die angegebenen Werte ohne Umrechnung g\u00fcltig.

Steintyp: Hochlochziegel Porotherm Homebric

Tabelle C58: Beschreibung

Steintyp		Hochlochziegel Porotherm Homebric	
Rohdichte ρ	[kg/dm ³]	≥ 0,70	
Normierte mittlere Druckfestigkeit	[N/mm ²]	≥ 10	
Umrechnungsfaktor für geringe Druckfestigkeiten	re	$(f_b / 10)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (FR)	
Steinabmessungen	[mm]	500 x 200 x 299	
Bohrverfahren	[-]	Drehbohren	
		54 = 9	31 44.5 200
7,9 25	4,5	494	10.5

Tabelle C59: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤2	≤ 2	≤ 2	≤2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 500)						
Minimaler Randabstand	Cmin	[mm]	120						
Ashashatand	Scr,II	[mm]				500			
Achsabstand	Scr,1	[mm]				300			
Minimaler Achsabstand	Smin,II Smin,⊥	[mm]				120			

Tabelle C60: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zunlant					Quer	ast		
Zuţ	Zuglast			m freien l	Rand	parallel zum	freien R	and
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Ctedge,VII
	400	4.00		120	0,30		400	0.00
	120	1,00		250	0,60		120	0,60
	120	1,00		500	1,00		200	1,00

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Porotherm Homebric Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C24

Steintyp: Hochlochziegel Porotherm Homebric – Fortsetzung

Tabelle C61: Faktor für Ankergruppen

	Anordnung parall	el zur La	gerfuge		Anordnung senk	recht zur	r Lagerfu	ge
		mit c ≥	mit s ≥	α _{g II,N}		mit c ≥	mit s ≥	α _{gL,N}
Zuelest		120	100	1,00	•	120	100	1,00
Zuglast		200	100	2,00		200	100	1,20
		120	500	2,00		120	300	2,00
	r	mit c ≥	mit s ≥	αg II,VI	†r	mit c ≥	mit s ≥	αστίλτ
Querlast		120	100	0,30		120	100	0,30
senkrecht	•	250	100	0,60		250	100	0,60
zum freien Rand		500 120	100 500	1,00 2,00		120	300	2,00
Overdent		mit c ≥	mit s ≥	α _g II,V II		mit c ≥	mit s ≥	α _g L,V II
Querlast parallel		120	100	1,00		120	100	1,00
zum freien Rand		120	500	2,00		120	300	2,00

Tabelle C62: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ ccr und	s ≥ s _{cr}	
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen							
hülse	Veranke- rungstiefe	TOTAL CONTROL			w/d w/w			d/d w/d w/w		
		24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		hef	hef			NRKp 1)		V _{Rk,b} 1)		
	3	[mm]	[kN]						[kN]	
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	2)			
M8	VM-SH 12	80			1,3	2			3,0	
M8 / M10/		≥ 85			1,3	2			3,0	
IG-M6 VM-SH 16	VM-SH 16	130	1,5				3,5			
M12 / M16/		≥ 85	1,2					4,0		
IG-M8 / IG-M10				1,5						

 $^{^{1)}}$ $N_{Rk,b,c}$ = $N_{Rk,p,c}$ und $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ gemäß Anhang C5

Tabelle C63: Verschiebungen

Ankergröße	hef	δ _N / N	δινο	δn⇒	δv/V	δνο	δv=
Alikergrobe	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δησ	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	37.00.5	5-7			0,31	0,31*V _{Rk} /3,5	,,,,

Injektionssystem VMU plus für Mauerwerk	Anhang C25
Leistungen – Hochlochziegel Porotherm Homebric	Annang 020
Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C58 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel BGV Thermo

Tabelle C64: Beschreibung

Steintyp	Hochlochziegel BGV Thermo
Rohdichte ρ [kg/dm³]	≥ 0,60
Normierte mittlere Druckfestigkeit f _b [N/mm²]	≥ 10
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 10)^{0.5} \le 1.0$
Norm [-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung) [-]	z.B. Leroux (FR)
Steinabmessungen [mm]	500 x 200 x 314
Bohrverfahren [-]	Drehbohren
42 28	500

Tabelle C65: Montagekennwerte

Ankergröße	Ankergröße			M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 500)						
Minimaler Randabstand	Cmin	[mm]	120						
	Scr,II	[mm]				500			
Achsabstand -	Scr,⊥	[mm]				315			
Minimaler Achsabstand	Smin,II Smin,⊥	[mm]				120			

Tabelle C66: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	Zuglost				Quer	last							
Zuglast			senkrecht zu	m freien f	parallel zum	freien Ra	and						
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII					
	400	4.00		120	0,30		400	0.00					
	120	1,00		250	0,60		120	0,60					
	120	1,00		500	1,00		250	1,00					

Injektionssystem VMU plus für Mauerwerk	
Leistung – Hochlochziegel BGV Thermo Beschreibung, Montagekennwerte und Reduktionsfaktoren	Anhang C26

Steintyp: Hochlochziegel BGV Thermo – Fortsetzung

Tabelle C67: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	recht zur	Lagerfu	ge
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αgL,N
Zuglast	••	120	100	1,00		120	100	1,00
		200	100	1,70		200	100	1,10
		120	500	2,00		120	315	2,00
O		mit c ≥	mit s ≥	αو ۱۱,۷⊥		mit c ≥	mit s ≥	αστ,ντ
Querlast senkrecht	•••	120	100	1,00	-	120	100	1,00
zum freien Rand		120	500	2,00		120	315	2,00
Querlast		mit c ≥	mit s ≥	α _g II,V II		mit c ≥	mit s ≥	αστίνιι
senkrecht zur Lagerfuge		120	100	1,00	1 1	120	100	1,00
		120	500	2,00		120	315	2,00

Tabelle C68: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive		Nutzungsbedingungen					
hülse	hülse	Veranke- rungstiefe		d/d		w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		hef			N _{Rk,b} =	N _{Rk,p} 1)			V _{Rk,b} 1)
		[mm]			[k1	N]			[kN]
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	2)		
M8	VM-SH 12	80			0,	9			3,5
M8 / M10/	VAA CU 46	≥ 85			0,	9			3,5
IG-M6	VM-SH 16	130	2,0	2,0	1,5	2,0	2,0	1,5	4,0
M12 / M16/	VM CH 20	≥ 85			0,	9			4,0
IG-M8 / IG-M10	VM-SH 20	≥ 130	2,0	2,0	1,5	2,0	2,0	1,5	4,0

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|l} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C69: Verschiebungen

Ankararäda	hef	δ _N / N	διο	δn∞	δv/V	δνο	δν∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δησ	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	33333	1,000			0,31	0,31*V _{Rk} /3,5	1,10,010

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel BGV Thermo	Anhang C27
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C64 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Calibric R+

Tabelle C70: Beschreibung

Steintyp		Hochlochziegel Calibric R+	
Rohdichte ρ	[kg/dm ³]	≥ 0,60	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	
Umrechnungsfaktor für geringer Druckfestigkeiten	е	$(f_b / 12)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Leroux (FR)	The state of the s
Steinabmessungen	[mm]	500 x 200 x 314	
Bohrverfahren	[-]	Drehbohren	
B		86	2000
	40_		

Tabelle C71: Montagekennwerte

Ankergröße	Ankergröße			M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤2	≤ 2	≤2	≤2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: cer = 500)						
Minimaler Randabstand	Cmin	[mm]	120						
19 10 - 25 V - 25	Scr, II	[mm]				500			
Achsabstand	Scr, ⊥	[mm]				315			
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]				120			

Tabelle C72: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast			Querlast							
Zug				senkrecht zum freien Rand parallel zum frei							
	mit c ≥	αedge,N		mit c ≥	Ctedge,V⊥		mit c ≥	Cledge,VII			
	100	1.00		120	0,15		120	0.20			
	120	1,00		250	0,30		120	0,30			
	120	1,00		500	1,00		250	1,00			

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Calibric R+	Anhang C28
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	

Steintyp: Hochlochziegel Calibric R+ - Fortsetzung

Tabelle C73: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	recht zur	r Lagerfu	ge
		mit c ≥	mit s ≥	α _{g II,N}		mit c ≥	mit s ≥	α _g L,N
Zuglast		120	100	1,00	•	120	100	1,00
	• •	175	100	1,70		175	100	1,10
		120	500	2,00		120	315	2,00
0		mit c ≥	mit s ≥	αو ۱۱,۷⊥		mit c ≥	mit s ≥	адт,ут
Querlast senkrecht	•••	120	100	1,00	-	120	100	1,00
zum freien Rand		120	500	2,00		120	315	2,00
Querlast		mit c ≥	mit s ≥	α _g II,V II		mit c ≥	mit s ≥	αστίνιι
parallel zum freien Rand	• •	120	100	1,00		120	100	1,00
		120	500	2,00		120	315	2,00

Tabelle C74: Charakteristische Widerstände unter Zug- und Querlast

		Effektive	С	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}										
Ankergröße	Sieb-		Nutzungsbedingungen											
3	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w					
		E-Alvania	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche					
		hef			N _{Rk,b} = I	N _{Rk,p} 1)			V _{Rk,b} 1)					
		[mm]			[kN	1]			[kN]					
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	2 N/mm ²	2)							
M8	VM-SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,0					
M8 / M10/	VAN CITAC	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,5					
IG-M6 VM-SH16	130	1,5	1,5	1,2	1,5	1,5	1,2	5,5						
M12 / M16	VAA CUICO	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	8,5					
IG-M8 /IG-M10	VM-SH20	≥ 130	1,5	1,5	1,2	1,5	1,5	1,2	8,5					

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c ⊥ gemäß Anhang C5

Tabelle C75: Verschiebungen

Ambound 0 o	hef	δ _N / N	δινο	δn	δv / V	δνο	δν
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	-	.,	2112111112	2 0110	0,31	0,31*V _{Rk} /3,5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Calibric R+	Anhang C29
Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C70 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Urbanbric

Tabelle C76: Beschreibung

Steintyp	Hochlochziegel Urbanbric	
Rohdichte ρ [kg/dm ³]	≥ 0,70	
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 12	
Umrechnungsfaktor für geringere Druckfestigkeiten	(f _b / 12) ^{0,5} ≤ 1,0	
Norm [-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung) [-]	z.B. Imerys (FR)	
Steinabmessungen [mm]	560 x 200 x 274	The state of the s
Bohrverfahren [-]	Drehbohren	
	QAO.	20 6.5 200
9 40 6	560	5,5

Tabelle C77: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 500)						500)	
Minimaler Randabstand	Cmin	[mm]	120							
	Scr, II	[mm]	560							
Achsabstand	Scr, ⊥	[mm]	275							
Minimaler Achsabstand	Smin, II; Smin, ⊥	[mm]	100							

Tabelle C78: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	loot		Querlast								
Zug	last		senkrecht zu	m freien l	Rand	parallel zum freien Rand					
	mit c ≥	Cledge,N		mit c ≥	Ctedge,V⊥		mit c ≥	Cledge,VII			
	400	4.00		120	0,25		400	0.50			
	120	1,00		250	0,50	1 😲	120	0,50			
	120	1,00		500	1,00		250	1,00			

Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Urbanbric
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C30

Steintyp: Hochlochziegel Urbanbric - Fortsetzung

Tabelle C79: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	recht zur	Lagerfug	je
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _{gL,} N
Zuglast		120	100	1,00	•	120	100	1,00
		185	100	1,90		185	100	1,10
		120	560	2,00		120	275	2,00
Overdent		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αgL,VL
Querlast senkrecht	•••	120	100	1,00		120	100	1,00
zum freien Rand		120	560	2,00		120	275	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	α _g L,V II
parallel zum freien Rand		120	100	1,00	1 1	120	100	1,00
		120	560	2,00		120	275	2,00

Tabelle C80: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ ccr und	s ≥ s _{cr}				
Ankergröße	Sieb-	Effektive	ve Nutzungsbedingungen										
	•	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w			
		FALSE	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche				
		hef			N _{Rk,b} = I	N _{Rk,p} 1)			V _{Rk,b} 1)				
		[mm]			[kN	1]			[kN]				
	1	Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	2 N/mm ²	2)						
M8	VM-SH 12	80	1,2	1,2	0,9	1,2	1,2	0,9	4,5				
M8 / M10/	V/M CI I 40	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	4,5				
IG-M6 VM-SH 16	VIVI-SH 16	130	3,0	3,0	2,5	3,0	3,0	2,5	4,5				
M12 / M16	V/M CI I CO	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	5,0				
IG-M8 / IG-M10		VM-SH 20	≥ 130	3,0	3,0	2,5	3,0	3,0	2,5	5,0			

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C81: Verschiebungen

Ankarară@a	hef	δ _N / N	διο	δn-	δv/V	δνο	δv=
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	(5)((5)	397.5	TALE SHOWS THE	- 5,10	0,31	0,31*V _{Rk} /3,5	1

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Urbanbric	Anhang C31
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C76 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Lochziegel Brique Creuse C40

Tabelle C82: Beschreibung

Steintyp	Lochziegel Brique Creuse C40
Rohdichte ρ [kg/dm³]	≥ 0,70
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 12
Umrechnungsfaktor für geringere Druckfestigkeiten	(f _b / 12) ^{0,5} ≤ 1,0
Norm [-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung) [-]	z.B. Terreal (FR)
Steinabmessungen [mm]	500 x 200 x 200
Bohrverfahren [-]	Drehbohren
	200
	40_8

Tabelle C83: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤2	≤2	≤2	≤ 2	≤2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: cer = 500)						500)
Minimaler Randabstand	Cmin	[mm]	120						
N /8	Scr, II	[mm]	500						
Achsabstand	Scr, ⊥	[mm]				200			
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	200						

Tabelle C84: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	ulant		Querlast						
Zug	glast		senkrecht zu	m freien l	Rand	parallel zum freien Rand			
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II	
•	120	1,00		120	0,83		120	1,00	
	120	1,00		500	1,00		250	1,00	

Anhang C32

Steintyp: Lochziegel Brique Creuse C40 - Fortsetzung

Tabelle C85: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	krecht zur Lagerfuge			
1 <u>25</u> 7 <u>1</u> 21		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αg1,N	
Zuglast		120	500	2,00		120	200	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V⊥		mit c ≥	mit s ≥	αστίΛτ	
senkrecht zum freien Rand		120	500	2,00		120	200	2,00	
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αστ,ν ΙΙ	
parallel zum freien Rand		120	500	2,00	•	120	200	2,00	

Tabelle C86: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstäi	nde bei c	≥ c _{cr} und	s ≥ s _{cr}	
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen							
Amongrous	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w	
		25000	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		her			N _{Rk,b} =	N _{Rkp} 1)			bereiche V _{Rk,b} 1)	
		[mm]			[kl	١]			[kN]	
	1	Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	2 N/mm²	2 2)	v.=		
M8	VM-SH 12	80								
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	1,5	
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85							70	

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|I} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C87: Verschiebungen

Ankararäda	hef	δ _N / N	διο	δn∞	δv/V	δνο	δν∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16		0,10	0,10,111,10,0	2 010	0,31	0,31*V _{Rk} /3,5	1,0 000

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Brique Creuse C40	Anhang C33
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C82 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Lochziegel Blocchi Leggeri

Tabelle C88: Beschreibung

Steintyp		Lochziegel Blocchi Leggeri	
Rohdichte ρ	[kg/dm ³]	≥ 0,60	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	
Umrechnungsfaktor für geringe Druckfestigkeiten	re	$(f_b / 12)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (IT)	
Steinabmessungen	[mm]	250 x 120 x 250	
Bohrverfahren	[-]	Drehbohren	
			120
1	43 6		25

Tabelle C89: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG-M10		
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 250)						
Minimaler Randabstand	Cmin	[mm]	60						
Ashashatand	Scr, II	[mm]				250			
Achsabstand	Scr, ⊥	[mm]				250			
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	100						

Tabelle C90: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	last				Quer	last							
Zug	iast		senkrecht zu	m freien l	Rand	parallel zum	freien R	and					
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII					
•	60	1,00		60	0,40		60	0,40					
	120	1,00		250	1,00		120	1,00					

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Blocchi Leggeri Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C34
Stembeschiebung, Montagekennwerte, Neduktionstaktoren	

Steintyp: Lochziegel Blocchi Leggeri – Fortsetzung

Tabelle C91: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	recht zu	r Lagerfu	ge			
		mit c ≥	mit s ≥	αg II, N		mit c ≥	mit s ≥	αg⊥, N			
Zuglast	• •	60	100	1,00		60	100	2,00			
		120	250	2,00		120	250	2,00			
0		mit c ≥	mit s ≥	α _g II,V⊥		mit c ≥	mit s ≥	ασινι			
Querlast	Particular .	60	100	0,40		60	100	0,40			
senkrecht zum freien Rand		250	100	1,00		250	100	1,00			
Zuili lieleli Kallu		250	250	2,00		250	250	2,00			
Overdent		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	ασμνιι			
Querlast		60	100	0,40	•	60	100	0,40			
parallel zum freien Rand	• •	120	100	1,00	1	120	100	1,00			
zum neien Kanu		120	250	2,00		120	250	2,00			

Tabelle C92: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}							
Ankergröße	Sieb-	Effektive	Nutzung		ngsbedingungen					
	hülse	Veranke- rungs- tiefe		d/d			w/d w/w		d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		hef		3	N _{Rk,b} = I	VRKp 1)			V _{Rk,b} 1)	
					[kN	l]			[kN]	
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	2 N/mm ²	2)			
M8	VM-SH 12	80								
M8 / M10/ IG-M6	VM-SH 16	≥ 85	0,6	0,6	0,6	0,6	0,6	0,6	3,5	
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85								

 $^{^{1)}}$ $N_{Rk,b,c}$ = $N_{Rk,p,c}$ und $V_{Rk,c\,II}$ = $V_{Rk,c\,\perp}$ gemäß Anhang C5

Tabelle C93: Verschiebungen

Ankarară () a	hef	δ _N / N	δινο	δn⇒	δv/V	δνο	δν=
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δησ	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	370000	7803	(34,272), 110,1(3,13,13)	7. Talife 18.	0,31	0,31*V _{Rk} /3,5	.,- 010

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Lochziegel Blocchi Leggeri Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C35
Gruppernaktoren, charaktensusche vyderstande und verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C88 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Doppio Uni

Tabelle C94: Beschreibung

Steintyp		Hochlochziegel Doppio Uni	
Rohdichte ρ	[kg/dm ³]	≥ 0,90	
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 28	
Umrechnungsfaktor für geringe Druckfestigkeiten	ere	$(f_b / 28)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (IT)	
Steinabmessungen	[mm]	250 x 120 x 120	
Bohrverfahren	[-]	Drehbohren	
			120
	11 26 9	250	

Tabelle C95: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤2	≤ 2	≤ 2	≤ 2	≤2	≤2
Randabstand	Ccr	[mm]	120	120 (für Querlasten senkrecht zum freien Rand: cer = 250)					
Minimaler Randabstand	Cmin	[mm]	100						
Scr. II [mm]			250						
Achsabstand	Scr, ⊥	[mm]	120						
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	100						

Tabelle C96: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	ulant				Querla	ast		
Zuţ	glast		senkrecht zu	ım freien l	Rand	parallel zum	freien Ra	and
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VI
•	100	1,00		100	0,50		100	1,00
	120	1,00		250	1,00		120	1,00

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Doppio Uni	Anhang C36
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	50.00

Steintyp: Hochlochziegel Doppio Uni- Fortsetzung

Tabelle C97: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	recht zur	Lagerfug	je
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αgL,N
Zuglast	• •	100	100	1,00		100	120	2,00
- 190700.000		120	250	2,00		120	120	2,00
Querlast		mit c ≥	mit s ≥	α _g II,V⊥		mit c ≥	mit s ≥	αστίλτ
senkrecht	•••	100	100	1,00		100	100	1,00
zum freien Rand		250	250	2,00		250	120	2,00
Overlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,V II
Querlast parallel		100	100	1,00		100	100	1,00
zum freien Rand		120	250	2,00		120	120	2,00

Tabelle C98: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}		
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen								
hülse	hülse	Veranke- rungstiefe	d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C		72°C / 120°C	alle Temperatur- bereiche		
		hef		$N_{RK,b} = N_{RK,p}$ 1)							
		[mm]		[kN]					[kN]		
	1	Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 2	28 N/mm ²	2)				
M8	VM-SH 12	80				-					
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,5		
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85	10 1371 10 1371	**					63		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C99: Verschiebungen

Ankorarăto	hef	δ _N / N	δινο	δn=	δv / V	δνο	δν∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δησ	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			55.4 11.50, 11.50, 11.50		0,31	0,31*V _{Rk} /3,5	110

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Doppio Uni	Anhang C37
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C94 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Coriso WS07 mit integrierter Wärmedämmung

Tabelle C100: Beschreibung

Füllung Mineralwolle Rohdichte ρ [kg/dm³] ≥ 0.55 Normierte mittlere Druckfestigkeit Umrechnungsfaktor für geringere Druckfestigkeiten Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) [-] z.B. Unipor (DE) Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren	Steintyp		Hochlochziegel Coriso WS07	
Normierte mittlere Druckfestigkeit f_b [N/mm²] ≥ 6 Umrechnungsfaktor für geringere Druckfestigkeiten $(f_b / 6)^{0.5} \leq 1,0$ Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) [-] z.B. Unipor (DE) Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren	Füllung		Mineralwolle	
Druckfestigkeit Tb [N/mm²] ≥ 6 Umrechnungsfaktor für geringere Druckfestigkeiten (fb / 6)0.5 ≤ 1,0 Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) [-] z.B. Unipor (DE) Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren	Rohdichte	ρ [kg/dm³]	≥ 0,55	All Marie Land
Druckfestigkeiten Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren		f _b [N/mm ²]	≥ 6	
Hersteller (Länderkennung) Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren		ngere	$(f_b / 6)^{0.5} \le 1.0$	
Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren	Norm	[-]	EN 771-1:2011+A1:2015	
Bohrverfahren [-] Drehbohren	Hersteller (Länderkennung)	[-]	z.B. Unipor (DE)	
	Steinabmessungen	[mm]	248 x 365 x 249	
	Bohrverfahren	[-]	Drehbohren	
14 16 7				

Tabelle C101: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤5	≤ 10	≤ 10	≤5	≤5	≤5
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 250)						250)
Minimaler Randabstand	Cmin	[mm]	50					78	
Scr. II [mm]			250						
Achsabstand	Scr, ⊥	[mm]	250						
Minimaler Achsabstand	Smin, II	[mm]	50						

Tabelle C102: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	ulant		Querlast						
Zuç	glast		senkrecht zu	senkrecht zum freien Rand parallel zum freien F					
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII	
•	50	1,00		50	0,30		50	1,00	
	120	1,00		250	1,00	—	120	1,00	

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Coriso WS07 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C38

Steintyp: Hochlochziegel Coriso WS07- Fortsetzung

Tabelle C103: Faktor für Ankergruppen

	Anordnung paral	Anordnung senkrecht zur Lagerfuge						
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _{gL,} N
Zuglast	• •	50	50	1,50		50	50	1,00
		120	250	2,00		120	250	2,00
50 000	†r	mit c ≥	mit s ≥	αg II,V⊥	+	mit c ≥	mit s ≥	αστντ
Querlast		50	50	0,40		50	50	0,40
senkrecht zum freien Rand		250	50	1,00		250	50	1,20
zum neiem rana		250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	ασμνιι
parallel	•	50	50	1,65	1 1	50	50	1,00
zum freien Rand	¥	120	250	2,00		120	250	2,00

Tabelle C104: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr} Nutzungsbedingungen							
Ankergröße	Sieb-	Effektive								
	hülse VM-SH	Veranke- rungs- tiefe		d/d		w/d w/w			d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		her		$N_{Rk,b} = N_{Rk,p}$ 1)						
		[mm]			[kN	1]	[kN]			
		Normierte n	nittlere Dr	uckfestig	keit f _b ≥	6 N/mm²	2)			
M8	VM-SH 12	80							-	
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0	
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85		*	2.1				5.51	

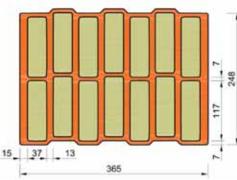
¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|l} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C105: Verschiebungen

Ankorarößo	hef	δ _N / N	δινο	δn∸	δv/V	δνο	δv=	
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 - M12 / IG-M6 - IG-M10	TO THE PROPERTY OF THE PARTY OF		0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*VRk/3,5	1,5*δνο	
M16		0,13			0,31	0,31*V _{Rk} /3,5	1	

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Coriso WS07	Anhang C39
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C100 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Hochlochziegel T7 MW mit integrierter Wärmedämmung

Tabelle C106: Beschreibung

Steintyp	Steintyp					
Füllung			Mineralwolle			
Rohdichte	ρ	[kg/dm ³]	≥ 0,59			
Normierte mittlere Druckfestigkeit	f _b	[N/mm ²]	≥ 8			
Umrechnungsfaktor für g Druckfestigkeiten	geringer	е	$(f_b / 8)^{0.5} \le 1.0$			
Norm		[-]	EN 771-1:2011+A1:2015			
Hersteller (Länderkennu	ng)	[-]	e.g. Wienerberger (DE)			
Steinabmessungen		[mm]	248 x 365 x 249			
Bohrverfahren		[-]	Drehbohren			

Tabelle C107: Montagekennwerte

Ankergröße	M8	M10	M12	M16	IG-M6	IG-M8	IG- M10		
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤5	≤ 10	≤ 10	≤5	≤5	≤ 5
Randabstand (unter Brandbeanspruchung)	Ccr; (Ccr,fi)	[mm]	(fi	ir Querlas	120 (2 h _{ef}) asten senkrecht zum freien Rand: c _{cr} = 250)				
Minimaler Randabstan	d C _{min}	[mm]	50						
Achsabstand (unter	Scr. II (Scr.fi, II)	[mm]	250 (4 h _{ef})						
Brandbeanspruchung)	Scr, ± (Scr,fi, ±)	[mm]	250 (4 h _{ef})						
Minimaler Achsabstand s _{min, II} ; s _{min, ⊥} [mm]			50						

Tabelle C108: Reduktionsfaktoren für Einzelanker unter Randeinfluss

700	last		Querlast							
Zug	iast	,	senkrecht zu	m freien l	Rand	parallel zum freien Rand				
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,∀II		
•	50	1,00		50	0,35		50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T7 MW	Anhang C40
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	

Steintyp: Hochlochziegel T7 MW - Fortsetzung

Tabelle C109: Faktor für Ankergruppen

	Anordnung paral	Anordnung senkrecht zur Lagerfuge						
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _{gL,N}
Zuglast	• •	50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
50 00 0		mit c ≥	mit s ≥	α _g II,V⊥		mit c ≥	mit s ≥	αστ.ντ
Querlast		50	50	0,60		50	50	0,40
senkrecht zum freien Rand		250	50	1,55		250	50	1,00
Zam molem rama		250	250	2,00	1 +	250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αд⊥,∨॥
parallel		50	50	2,00	1 1	50	50	1,20
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C110: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}								
Ankergröße	Sieb- hülse Effektive Veranke- rungstiefe		Nutzungsbedingungen								
				d/d		w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		her			N _{Rk,b} = I	N _{Rk,p} 1)			V _{Rk,b} 1)		
		[mm]	[kN]						[kN]		
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥	8 N/mm²	2)				
M8	VM-SH 12	80			· -				170		
M8 / M10/ IG-M6	VM-SH 16	≥ 85	0.0		4.5		2,0	4.5	3,0		
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0		1,5			
M16 / IG-M10	VM-SH 20	≥ 85							4,5		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C111: Verschiebungen

Ankorară@a	hef	δ _N / N	δινο	δn=	δv/V	δνο	δν∞
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δησ	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			55.4 D 50.1 1895 5.52 4.50		0,31	0,31*V _{Rk} /3,5	110.000

Anhang C41

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C106 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Tabelle C112: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße Sieb- hülse	1072372	Effektive Veranke- rungstiefe		Charakteristisci N _{Rk,b,fi} = N _{Rk}	1011	i
	hef	R30	R60	R90	R120	
		[mm]		[kt	N]	
M8 / M10 / IG-M6	VM-SH 16	130				Indian Laintina
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	keine Leistung bewertet

Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel T7 MW
Charakteristische Widerstände unter Brandbeanspruchung

Anhang C42

Steintyp: Hochlochziegel T8 P mit integrierter Wärmedämmung

Tabelle C113: Beschreibung

		Hochlochziegel T8 P	
Füllung		Perlite	William.
Rohdichte ρ [l	kg/dm³]	≥ 0,56	Real Property of the
Normierte mittlere Druckfestigkeit f _b [l	N/mm²]	≥ 6	
Jmrechnungsfaktor für geringere Druckfestigkeiten		$(f_b / 6)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	The same of the sa
Bohrverfahren	[-]	Drehbohren	
		94 113 B 113 6	

Tabelle C114: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 4	≤4	≤ 10	≤ 10	≤ 4	≤4	≤4
Randabstand	Ccr	[mm]	120	(für Quer	lasten ser	krecht zu	ım freien F	Rand: ccr =	250)
Minimaler Randabstand	Cmin	[mm]				50			
Ashashatand	Scr, II	[mm]	250						
Achsabstand Scr.		[mm]	250						
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]				50			

Tabelle C115: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast			Querlast								
Zuţ				m freien l	Rand	parallel zum freien Rand						
	mit c ≥	αedge,N		mit c ≥	αedge,V⊥		mit c ≥	Ctedge,VII				
•	50	1,00		50	0,25		50	1,00				
	120	1,00		250	1,00		120	1,00				

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T8 P Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C43

Steintyp: Hochlochziegel T8 P - Fortsetzung

Tabelle C116: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung senk	recht zu	r Lagerfu	ge
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _{gL,N}
Zuglast	• •	50	50	1,30		50	50	1,10
		120	250	2,00		120	250	2,00
	+	mit c ≥	mit s ≥	α _g II,V⊥	+	mit c ≥	mit s ≥	αστ,ντ
Querlast		50	50	0,40		50	50	0,30
senkrecht zum freien Rand	•	250	50	1,35		250	50	1,20
Zum neiem Kana		250	250	2,00		250	250	2,00
Overlant		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αgLVII
Querlast parallel	• •	50	50	1,70		50	50	1,00
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C117: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive		92					
hülse	270.00000000000000000000000000000000000	Veranke- rungs- tiefe		d/d			w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
	hef			V _{Rk,b} 1)					
		[mm]			[k1	N]			[kN]
		Normierte n	nittlere Dr	uckfestig	keit f _b ≥	6 N/mm ²	2)		
M8	VM-SH 12	80							
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	4,5
M12 / IG-M8	VM-SH 20	≥ 85			20-111 4.5				
M16 / IG-M10	VM-SH 20	≥ 85	2,5	2,5	2,0	2,5	2,5	2,0	7,0

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c ⊥ gemäß Anhang C5

Tabelle C118: Verschiebungen

Ankarară () a	hef	δ _N / N	δινο	δn∞	δ _V / V	δνο	δν
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16			2112 11161 212	2 0110	0,31	0,31*V _{Rk} /3,5	.,.

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel T8 P	Anhang C44
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C113 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Thermoplan MZ90-G mit integrierter Wärmedämmung Tabelle C119: Beschreibung

Steintyp		Hochlochziegel Thermoplan MZ90-G	
Füllung		Mineralwolle	
Rohdichte p	[kg/dm ³]	≥ 0,68	A STATE OF THE STA
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 12	I May and
Umrechnungsfaktor für geringe Druckfestigkeiten	re	$(f_b / 12)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	
Hersteller (Länderkennung)	[-]	z.B. Mein Ziegelhaus (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren	[-]	Drehbohren	
	13		13 13 13

Tabelle C120: Montagekennwerte

Ankergröße	Ankergröße				M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 4	≤4	≤ 10	≤ 10	≤4	≤4	≤4
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)						250)
Minimaler Randabstand	Cmin	[mm]	50						
Ashashatand	Scr. II	[mm]				250			
Achsabstand	Scr, 1	[mm]				250			
Minimaler Achsabstand	Smin, II	[mm]				50			

Tabelle C121: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	Zuglast			-	Quer	last						
Zug	iast		senkrecht zum freien Rand parallel zum freien f					and				
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII				
•	50	1,00		50	0,25		50	1,00				
	120	1,00		250	1,00		120	1,00				

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Thermoplan MZ90-G Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C45

Steintyp: Hochlochziegel Thermoplan MZ90-G - Fortsetzung

Tabelle C122: Faktor für Ankergruppen

	Anordnung paral	lel zur La	gerfuge		Anordnung sent	recht zu	r Lagerfu	ge
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _g L,N
Zuglast	• •	50	50	1,00		50	50	1,00
		120	250	2,00		120	250	2,00
2000000000		mit c ≥	mit s ≥	α _g II,V⊥		mit c ≥	mit s ≥	ασι,νι
Querlast		50	50	0,75		50	50	0,50
senkrecht zum freien Rand		250	50	2,00		250	50	1,70
Zum neiem Kana		250	250	2,00		250	250	2,00
Quartent		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αдт, V II
Querlast parallel zum freien Rand	• •	50	50	1,65	1	50	50	1,15
		120	250	2,00		120	250	2,00

Tabelle C123: Charakteristische Widerstände unter Zug- und Querlast

			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}						
Ankergröße	Sieb-	Effektive			Nutzu	ıngsbedi	ingunger	1	80
	hülse	Veranke- rungs- tiefe		d/d		w/d w/w			d/d w/d w/w
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche
		hef			N _{Rk,b} =	N _{Rkp} 1)	723	N-L	V _{Rk,b} 1)
		[mm]			١]		[kN]		
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	2 N/mm ²	2 2)		
M8	VM-SH 12	80							
M8 / M10/ IG-M6	VM-SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	4,0
M12 / IG-M8	VM-SH 20	≥ 85			ISOSPIE	430003	138,460	G-36256	
M16 / IG-M10	VM-SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,5

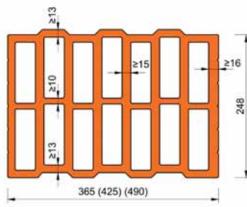
¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|I} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C124: Verschiebungen

Ankorarăto	hef	δ _N / N	δινο	δn⇒	δv/V	δνα	δν
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	No. and the second seco		0,13*N _{Rk} / 3,5	2*δηο	m] [mm/kN] [mm] 0,55 0,55*V _{Rk} /3,5		1,5*δνο
116		X := X		0,31	0,31*V _{Rk} /3,5	16 646	

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Thermoplan MZ90-G	Anhang C46
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C119 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.



Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung

Tabelle C125: Beschreibung

Steintyp	Hochlochziegel Porotor FZ7,5		
Füllung			Mineralwolle
Rohdichte	ρ	[kg/dm ³]	≥ 0,70
Normierte mittlere Druckfestigkeit	fb	[N/mm ²]	≥ 8
Umrechnungsfaktor für ge Druckfestigkeiten	ringer	е	$(f_b / 8)^{0.5} \le 1.0$
Norm		[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung	g)	[-]	z.B.: Schlagmann (DE)
Steinabmessungen	20	[mm]	248 x 365 x 249
Bohrverfahren		[-]	Drehbohren

Tabelle C126: Montagekennwerte

Ankergröße	Ankergröße			M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤5	≤ 10	≤ 10	≤5	≤5	≤5	
Randabstand (unter Brandbeanspruchung)	C _{Cr,} (C _{cr,fi})	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)							
Minimaler Randabstand	d C _{min}	[mm]						12742 070		
Achsabstand (unter	Scr. II (Scr.fi, II)	[mm]		250 (4 h _{ef})						
Montagedrehmoment Randabstand (unter Brandbeanspruchung) Minimaler Randabstand Achsabstand (unter Brandbeanspruchung) Minimaler	Scr, ± (Scr,fi, ±)					250 (4 h	ef)			
Minimaler Achsabstand	Smin, II; Smin, ±	[mm]	50							

Tabelle C127: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast				Querla	ast						
Zuglast			senkrecht zum freien Rand parallel zum frei					ien Rand				
	mit c ≥	Ctedge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII				
•	50	1,00		50	0,35		50	1,00				
	120	1,00		250	1,00	—	120	1,00				

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton FZ7,5 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C47

Steintyp: Hochlochziegel Poroton FZ7,5 mit Wärmedämmung – Fortsetzung Tabelle C128: Faktor für Ankergruppen

e s	Anordnung para	Anordnung sen	krecht zu	r Lagerfu	ige			
0		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _g μ,N
Zuglast	••	50	50	1,40		50	50	1,15
		120	250	2,00		120	250	2,00
0	14	mit c ≥	mit s ≥	α _g II,V⊥	PACKET THE	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
Querlast senkrecht		50	50	0,60		50	50	0,40
zum freien Rand		250	50	1,55		250	50	1,00
zum freien Kand	1	250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,VII
Parallel		50	50	2,00	1 1	50	50	1,20
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C129: Charakteristische Widerstände unter Zug- und Querlast

		Effektive Veranke- rungstiefe	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}								
Ankergröße	hülse Ver			Nutzungsbedingungen							
Ankergrose			d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		hef	$N_{Rk,b} = N_{Rk,p}$ 1)						V _{Rk,b} 1)		
		[mm]		[kN]							
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥	8 N/mm ²	2)				
M8	VM-SH 12	80							+-		
M8 / M10 /IG-M6	VM-SH 16	≥ 85	2.0	20	4.5	20	2,0	1,5	3,0		
M12 / IG-M8	VM-SH 20	≥ 85	2,0	2,0	1,5	2,0					
M16 / IG-M10	VM-SH 20	≥ 85	į.						4,5		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C130: Verschiebungen

Ankergröße	h _{ef} [mm]	δ _N / N [mm/kN]	δ _{N0} [mm]	δ _N	δv / V [mm/kN]	δv ₀ [mm]	δv∞ [mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5			0,55*V _{Rk} /3,5	1,5*δνο
M16			- 1		0,31	0,31*V _{Rk} /3,5	.,,

Tabelle C131: Charakteristische Widerstände unter Brandbeanspruchung

Sieb- Ankergröße hülse		Effektive Veranke- rungstiefe	Charakteristischer Widerstand N _{Rk,b,fi} = N _{Rk,p,fi} = V _{Rk,b,fi}						
rimorgrous		het	R30	R60	R90	R120			
		[mm]	[kN]						
M8 / M10 /IG-M6	VM-SH 16	130			15.11	Iraina Laiatuna			
M12 / M16 / IG-M8 – IG-M10	1////-51 201	≥ 130	0,64	0,37	0,11	keine Leistung bewertet			

		J plus für Mauerwerk
nang C48	Anhang C48	ziegel Poroton FZ7,5 rakteristische Widerstände und Verschiebungen
		rakteristische vviderstande und Verschiebungen

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C125 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung

Tabelle C132: Beschreibung

Steintyp		Hochlochziegel Poroton FZ9	
Füllung		Mineralwolle	THE REAL PROPERTY.
Rohdichte p	[kg/dm ³]	≥ 0,90	10
Normierte mittlere Druckfestigkeit f _b	[N/mm ²]	≥ 10	
Umrechnungsfaktor für geringe Druckfestigkeiten	re	$(f_b / 10)^{0.5} \le 1.0$	
Norm	[-]	EN 771-1:2011+A1:2015	4
Hersteller (Länderkennung)	[-]	z.B. Wienerberger (DE)	
Steinabmessungen	[mm]	248 x 365 x 249	
Bohrverfahren	[-]	Drehbohren	
	214,0 28,0 (128,0) 214,0	\$22.0 \$22.0 \$214.0 \$22.0 \$22.0	9,61

Tabelle C133: Montagekennwerte

Ankergröße	Ankergröße			M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤5	≤ 10	≤ 10	≤5	≤5	≤5	
Randabstand (unter Brandbeanspruchung)	C _{cr.} (C _{cr.fi})	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)							
Minimaler Randabstand	C _{min}	[mm]								
Achsabstand (unter	Scr. II (Scr.fi, II)	[mm]		250 (4 h _{ef})						
	Scr, 1 (Scr,fi, 1)	[mm]	250 (4 het)							
Minimaler Achsabstand s _{min,II;} s _{min,⊥} [mm]			50							

Tabelle C134: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast			Querlast									
Zuţ	giast		senkrecht zu	m freien l	Rand	parallel zum freien Rand							
	mit c ≥	Ctedge,N		mit c ≥	αedge,V±		mit c ≥	Cledge,VII					
•	50	1,00		50	0,35		50	1,00					
	120	1,00		250	1,00		120	1,00					

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton FZ9 mit Wärmedämmung Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C49

Steintyp: Hochlochziegel Poroton FZ9 mit Wärmedämmung – Fortsetzung

Tabelle C135: Faktor für Ankergruppen

e	Anordnung para	llel zur La	gerfuge		Anordnung sen	krecht zu	r Lagerfu	ige
11.22 (2.22 0.05		mit c ≥	mit s ≥	Clg II,N		mit c ≥	mit s ≥	αgLN
Zuglast	••	50	50	1,40		50	50	1,15
-1265/00/01/2		120	250	2,00		120	250	2,00
0	+	mit c ≥	mit s ≥	αg∥,V⊥	+	mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
Querlast	Target .	50	50	0,60		50	50	0,40
senkrecht zum freien Rand		250	50	1,55		250	50	1,00
zum freien Kand		250	250	2,00		250	250	2,00
Querlast		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥,VII
parallel		50	50	2,00	1 1	50	50	1,20
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C136: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}		
A				Nutzungsbedingungen							
Ankergröße			d/d			w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
				V _{Rk,b} 1)							
		[mm]			[kN	1]	[kN]				
	1	Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	2)	W-			
M8	VM-SH 12	80									
M8 / M10 /IG-M6	VM-SH 16	≥ 85		2,0	1.2	2,0	2,0	1,5	3,0		
M12 / IG-M8	VM-SH 20	≥ 85	2,0		1,5	2,0					
M16 / IG-M10	VM-SH 20	≥ 85	Ĺ,						4,5		

¹⁾ N_{Rk,b,c} = N_{Rk,p,c} und V_{Rk,c II} = V_{Rk,c ⊥} gemäß Anhang C5

Tabelle C137: Verschiebungen

Ankergröße	her	δ _N / N	δινο	δn=	δ _V / V	δνο	δv=
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16				A-115488	0,31	0,31*V _{Rk} /3,5	i intropas

Tabelle C138: Charakteristische Werte unter Brandbeanspruchung

Ankergröße Sieb- hülse	100000000000000000000000000000000000000	Effektive Veranke- rungstiefe	Charakteristischer Widerstand $N_{Rk,b,fi} = N_{Rk,p,fi} = V_{Rk,b,fi}$					
		hef	R30	R60	R90	R120		
		[mm]	[kN]					
M8 / M10 /IG-M6	VM-SH 16	130				kajas Laistuss		
M12 / M16 / IG-M8 IG-M10	VM-SH 20	≥ 130	0,64	0,37	0,11	keine Leistung bewertet		

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton FZ9	Anhang C50
Gruppenfaktoren und charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C132 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Poroton S9 mit integrierter Wärmedämmung

Tabelle C139: Beschreibung

Rohdichte ρ [kg/dm³] ≥ 0.85 Normierte mittlere ρ [N/mm²] ≥ 12 Umrechnungsfaktor für geringere ρ (fb / 12)0.5 ≤ 1.0 Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) [-] e.g. Schlagmann (DE) Steinabmessungen [mm] 248 x 365 x 249	Steintyp		Hochlochziegel Poroton S9	
Normierte mittlere Druckfestigkeit Jmrechnungsfaktor für geringere Druckfestigkeiten Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) Ge.g. Schlagmann (DE) Steinabmessungen Gelich (Table) Gelich	Füllung		Perlite	
Oruckfestigkeit Umrechnungsfaktor für geringere Oruckfestigkeiten Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) Gteinabmessungen [-] En 771-1:2011+A1:2015 Drehbohren 248 x 365 x 249 Bohrverfahren [-] Drehbohren	Rohdichte	ρ [kg/dm³]	≥ 0,85	
Oruckfestigkeiten Norm [-] EN 771-1:2011+A1:2015 Hersteller (Länderkennung) [-] e.g. Schlagmann (DE) Steinabmessungen Sohrverfahren [-] Drehbohren ≥12,0 ₹	Normierte mittlere Druckfestigkeit	f _b [N/mm ²]	≥ 12	
Hersteller (Länderkennung) [-] Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren ≥12,0 ∰ Note the steinabmessungen [-] Drehbohren	Umrechnungsfaktor für gerin Druckfestigkeiten	gere	$(f_b / 12)^{0.5} \le 1.0$	
Steinabmessungen [mm] 248 x 365 x 249 Bohrverfahren [-] Drehbohren ≥12,0	Norm	[-]	EN 771-1:2011+A1:2015	
Sohrverfahren [-] Drehbohren 212,0 212,0 212,0 212,0 212,0	Hersteller (Länderkennung)	[-]	e.g. Schlagmann (DE)	
	Steinabmessungen	[mm]	248 x 365 x 249	
	Bohrverfahren	[-]	Drehbohren	1
				-

Tabelle C140: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 5	≤ 5	≤ 10	≤ 10	≤ 5	≤ 5	≤ 5	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: ccr = 250)				250)			
Minimaler Randabstand	Cmin	[mm]	50							
	Scr, II	[mm]	250							
Achsabstand	Scr, 1	[mm]	250							
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	50							

Tabelle C141: Reduktionsfaktoren für Einzelanker unter Randeinfluss

Zuglast			Querlast							
Zuç	jiast	11	senkrecht z	um freien l	Rand	parallel zum freien Rand				
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VI		
•	50	1,00		50	0,30		50	1,00		
	120	1,00		250	1,00		120	1,00		

Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Poroton S9
Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren

Anhang C51

Steintyp: Hochlochziegel Poroton S9 – Fortsetzung

Tabelle C142: Faktor für Ankergruppen

A	nordnung para	Anordnung senkrecht zur Lagerfuge						
1		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _g L,N
Zuglast	• •	50	50	1,50		50	50	1,00
		120	250	2,00		120	250	2,00
S. S. S.		mit c ≥	mit s ≥	α _{g II,V⊥}		mit c ≥	mit s ≥	$\alpha_{g\perp,V\perp}$
Querlast		50	50	0,40		50	50	0,40
senkrecht zum freien Rand		250	50	1,00		250	50	1,20
-		250	250	2,00		250	250	2,00
Overdent -		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αg⊥vII
Querlast parallel	• •	50	50	1,65	1	50	50	1,00
zum freien Rand		120	250	2,00		120	250	2,00

Tabelle C143: Charakteristische Widerstände unter Zug- und Querlast

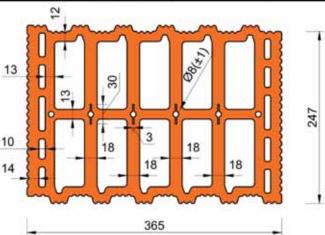
			Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}								
Ankergröße	Sieb-		Nutzungsbedingungen								
	hülse			d/d		w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		her		V _{Rk,b} 1)							
		[mm]		[kN]							
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	2 N/mm ²	2)				
M8	VM-SH 12	80									
M8 / M10/ IG-M6	VM-SH 16	≥ 85	1,5	1,5	1,5	1,5	1,5	1,5	5,0		
M12 / M16 IG-M8 / IG-M10	VM-SH 20	≥ 85	450	2005	TIMES	5.75		POWER.	1 2 2 2		

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c ⊥ gemäß Anhang C5

Tabelle C144: Verschiebungen

Ankorarößo	her	δ _N / N	διο	δn···	δ _V / V	δνο	δν
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	alle 0,13 0,13*N _{Rk} /	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	1 55.05		31.0 (11/12) 310	2 5/10	0,31	0,31*V _{Rk} /3,5	1,0 0.0

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Poroton S9 Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C52
Gruppeniaktoren, charakteristische Widerstande und Verschiebungen	


²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C139 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Hochlochziegel Thermopor TV8+ mit integrierter Wärmedämmung Tabelle C145: Beschreibung

Steintyp	Hochlochziegel Thermopor TV8+ Mineralwolle		
Füllung			
Rohdichte	ρ	[kg/dm ³]	≥ 0,70
Normierte mittlere Druckfestigkeit	fb	[N/mm ²]	≥ 10
Umrechnungsfaktor für gerin Druckfestigkeiten	gere	•	(f _b / 10) ^{0,5} ≤ 1,0
Norm		[-]	EN 771-1:2011+A1:2015
Hersteller (Länderkennung)		[-]	e.g. THERMOPOR GmbH (DE)
Steinabmessungen		[mm]	247 x 365 x 249
Bohrverfahren		[-]	Drehbohren

Tabelle C146: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤ 4	≤ 4	≤ 10	≤ 10	≤ 4	≤ 4	≤4	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: cer = 250)				250)			
Minimaler Randabstand	Cmin	[mm]	50							
Ashashataad	Scr, II	[mm]	250							
Achsabstand	Scr, ⊥	[mm]	250							
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]	50							

Tabelle C147: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7.00	Zuglast			Querlast							
Zuglast			senkrecht zu	m freien l	Rand	parallel zum freien Rand					
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII			
•	50	1,00		50	0,25		50	1,00			
	120	1,00		250	1,00		120	1,00			

Injektionssystem VMU plus für Mauerwerk

Leistungen – Hochlochziegel Thermopor TV8+ Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren Anhang C53

Steintyp: Hochlochziegel Thermopor TV8+ - Fortsetzung

Tabelle C148: Faktor für Ankergruppen

	Anordnung para	Anordnung senkrecht zur Lagerfuge			
		mit c ≥	mit s ≥	αg II,N	mit c≥ mit s≥ α _{g⊥,N}
Zuglast	• •	50	50	1,00	50 50 1,00
		120	250	2,00	120 250 2,00
		mit c ≥	mit s ≥	α _g II,V⊥	mit c≥ mit s≥ α _{g⊥,V⊥}
Querlast senkrecht		50	50	0,75	50 50 0,50
zum freien Rand		250	50	2,00	250 50 1,70
Zulli li eleli Kallu		250	250	2,00	250 250 2,00
Querlast		mit c ≥	mit s ≥	αg II,V II	mit c ≥ mit s ≥ α _{g ⊥,V II}
parallel	• •	50	50	1,65	50 50 1,15
zum freien Rand	*	120	250	2,00	120 250 2,00

Tabelle C149: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ ccr und	s ≥ s _{cr}
Ankergröße	Sieb-	Effektive	Nutzungsbedingungen						
hülse	hülse	Veranke- rungstiefe		d/d			w/d w/w		
		24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		hef	$N_{Rk,b} = N_{Rk,p}$ 1)				V _{Rk,b} 1)		
		[mm]			[k1	N]			[kN]
		Normierte m	ittlere Dr	uckfestig	keit f _b ≥ 1	0 N/mm ²	2)	(t)	
M8	VM-SH 12	80							
M8 / M10/ IG-M6	VM-SH 16	≥ 85	3,0	3,0	2,5	3,0	3,0	2,5	3,5
M12 / IG-M8	VM-SH 20	≥ 85			2.24				5.55 d*
M16 / IG-M10	VM-SH 20	≥ 85	3,5	3,5	3,0	3,5	3,5	3,0	7,0

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c|l|} = V_{Rk,c\perp}$ gemäß Anhang C5

Tabelle C150: Verschiebungen

Ambanna 80 a	hef	δ _N / N	δινο	δn=	δ _V / V	δνο	δν
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 - M12 / IG-M6 - IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16		-,	71177.11083.717	2 0110	0,31	0,31*V _{Rk} /3,5	1,,000,00

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Hochlochziegel Thermopor TV8+	Anhang C54
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C145 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Leichtbetonlochstein HBL 16DF

Tabelle C151: Beschreibung

Steintyp	Leichtbetonlochstein HBL 16DF	
Rohdichte ρ [kg/dm³]	≥ 1,0	
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 3,1	43
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 3,1)^{0,5} \le 1,0$	
Norm [-]	EN 771-3:2011+A1:2015	
Hersteller (Länderkennung) [-]	z.B. KLB Klimaleichtblock (DE)	
Steinabmessungen [mm]	500 x 250 x 240	100
Bohrverfahren [-]	Drehbohren	
25 30 L 42.5 50 25 5	185 30 185 30 25 50 1	25 50 25 40 25 50 25

Tabelle C152: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG- M10	
Montagedrehmoment	ontagedrehmoment T _{inst} [Nm		≤ 2	≤ 2	≤ 5	≤ 5	≤ 2	≤ 5	≤ 5	
Randabstand (unter Brandbeanspruchung)	cr; (Ccr,fi)	[mm]	120 (2 h _{ef}) (für Querlasten senkrecht zum freien Rand: c _{cr} = 250)				50)			
Minimaler Randabstand	Minimaler Randabstand cmin [mm]			50						
Achsabstand (unter Scr. II	(Scr.fi, II)	[mm]				500 (4 h	ef)			
Brandbeanspruchung) scr, 1			250 (4 hef)							
		[mm]	50							

Tabelle C153: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast			Querlast							
Zuţ	jiast		senkrecht zu	m freien l	Rand	parallel zum freien Rand					
	mit c ≥	Ctedge,N		mit c ≥	αedge,V⊥		mit c ≥	Ctedge,VII			
•	50	1,00		50	0,30		50	1,00			
	120	1,00		250	1,00	—	120	1,00			

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Leichtbetonlochstein HBL 16DF Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C55

Steintyp: Leichtbetonlochstein HBL 16DF – Fortsetzung Tabelle C154: Faktor für Ankergruppen

	Anordnung para	llel zur La	gerfuge		Anordnung senkrecht zur Lagerfuge			
		mit c ≥	mit s ≥	Olg II,N		mit c ≥	mit s ≥	αg1,N
Zuglast	(e)e)	50	50	2,00		50	50	1,55
554		120	500	2,00		120	250	2,00
Overdent	+	mit c ≥	mit s ≥	α _g II,V⊥	+	mit c ≥	mit s ≥	ασΙ,νΙ
Querlast	0.0+	50	50	0,60	-	50	50	0,35
senkrecht zum freien Rand		120	50	2,00		120	50	1,15
zum freien Kand	+	120	500	2,00		120	250	2,00
Overdent	W	mit c ≥	mit s ≥	αg II,V II	1	mit c ≥	mit s ≥	αgLVII
Querlast		50	50	1,30	*	50	50	1.00
parallel zum freien Rand		120	250	2,00		50	50	1,00
		120	500	2,00	1	120	250	2,00

Tabelle C155: Charakteristische Widerstände unter Zug- und Querlast

			С	harakteri	stische V	Viderstär	nde bei c	≥ c _{cr} und	s ≥ s _{cr}	
Ankanas	Ciab	Effektive.	Nutzungsbedingungen							
Ankergröße Sieb- hülse		Veranke- rungs-	d/d			w/d w/w			d/d w/d w/w	
		tiefe	24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		hef	$N_{Rk,b} = N_{Rk,p}$ 1)						V _{Rk,b} 1)	
		[mm]			[k1	Service and the service and th		0	[kN]	
_	No	rmierte mi	ttlere Dru	ıckfestigl	keit f _b ≥ 3	,1 N/mm	2 2)			
M8 / M10/IG-M6	VM-SH 16	≥ 85	1,2	1,2	0,9	1,2	1,2	0,9	2,0	
M12 / IG-M8	VM-SH 20	≥ 85	4.5	4.5	4.0	4.5	1,5 1,5	4.0	3,0	
M16 / IG-M10	VM-SH 20	≥ 85	1,5	1,5	1,2	1,5		1,2	5,0	

¹⁾ NRk,b,c = NRk,p,c und VRk,c II = VRk,c \(\pm \) gemäß Anhang C5

Tabelle C156: Verschiebungen

Ankergröße	h _{ef} [mm]	δ _N / N	δ _{N0} [mm]	δ _N =	δv / V [mm/kN]	δvo [mm]	δν⊶ [mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,13	0,13*N _{Rk} / 3,5	2*δηο	0,55	0,55*V _{Rk} /3,5	1,5*δνο
M16	33005	174.00	24.17.11111.1.747.		0,31	0,31*V _{Rk} /3,5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Tabelle C157: Charakteristische Widerstände unter Brandbeanspruchung

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristischer Widerstand N _{Rk,b,fi} = N _{Rk,p,fi} = V _{Rk,b,fi}				
1000000		hef	R30	R60	R90	R120	
		[mm]		[kN]		
M8 / M10 /IG-M6	VM-SH 16	130	0.20	0.24	keine Leistung	below belows	
M12 / IG-M8	VM-SH 20	≥ 130	0,29 0,21	bewertet	keine Leistung bewertet		
M16 / IG-M10	VM-SH 20	≥ 130	0,29 0,21 0		0,12	Dewertet	

Injektionssystem VMU plus für Mauerwerk	
Leistung – Leichtbetonlochstein HBL 16DF Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	Anhang C56

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C151 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Betonlochstein Bloc Creux B40

Tabelle C158: Beschreibung

Steintyp	Betonlochstein Bloc Creux B40	
Rohdichte ρ [kg/dm³]	≥ 0,8	
Normierte mittlere Druckfestigkeit f _b [N/mm ²]	≥ 5,2	
Umrechnungsfaktor für geringere Druckfestigkeiten	$(f_b / 5,2)^{0,5} \le 1,0$	
Norm [-]	EN 771-3:2011+A1:2015	
Hersteller (Länderkennung) [-]	z.B. Leroux (FR)	
Steinabmessungen [mm]	500 x 200 x 200	
Bohrverfahren [-]	Drehbohren	
		17, 72 17, 72 17
17 130	17 130 17 130 495	_[17]

Tabelle C159: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10	
Montagedrehmoment	Tinst	[Nm]	≤4	≤ 4	≤ 4	≤4	≤4	≤ 4	≤ 4	
Randabstand	Ccr	[mm]	120 (für Querlasten senkrecht zum freien Rand: cer = 170)							
Minimaler Randabstand	Cmin	[mm]	50							
	Scr, II	[mm]	170							
Achsabstand	Scr, ⊥	[mm]	200							
Minimaler Achsabstand	Smin, II	[mm]	50							

Tabelle C160: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	Zuglast			Querlast								
Zu	giast		senkrecht zu	ım freien l	Rand	parallel zum freien Rand						
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	αedge,V II				
•	50	1,00		50	0,35	1	50	1,00				
	120	1,00		170	1,00		120	1,00				

Injektionssystem VMU plus für Mauerwerk	
Leistung – Betonlochstein Bloc Creux B40 Steinbeschreibung, Montagekennwerte, Reduktionsfaktoren	Anhang C57

Steintyp: Betonlochstein Bloc Creux B40 – Fortsetzung

Tabelle C161: Faktor für Ankergruppen

	Anordnung para	lel zur La	gerfuge		Anordnung senk	recht zu	r Lagerfu	ge
	†r	mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	α _{gL,N}
7		50	50	1,50	•	50	50	1,40
Zuglast	• •	50	170	2,00	•	50	200	2,00
		120	170	2,00		120	200	2,00
		mit c ≥	mit s ≥	αgII,VI		mit c ≥	mit s ≥	αστίλτ
Querlast		50	50	0,55		50	50	0,35
senkrecht zum freien Rand	la l	120	50	1,30		120	50	0,85
zum meiem rama		120	170	2,00		120	200	2,00
		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αστίνιι
Querlast		50	50	1 10	•	50	50	1,00
parallel zum freien Rand		50	50	1,10		50	200	2,00
Zum noion rumu		120	170	2,00		120	200	2,00

Tabelle C162: Charakteristische Widerstände unter Zug- und Querlast

	Sieb- hülse	Effektive Veranke- rungs- tiefe	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr} Nutzungsbedingungen								
Ankergröße											
				d/d		w/d w/w			d/d w/d w/w		
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche		
		hef		M rai	N _{Rk,b} = I	N _{Rkp} 1)	32	117.	V _{Rk,b} 1)		
		[mm]		[kN]							
	N	ormierte mi	ttlere Dru	ıckfestigl	keit f _b ≥ 5	,2 N/mm	2 2)	06			
M8 / M10 IG-M6	VM-SH 16	130	2.0	4.5	4.0		22	4.0			
M12 / M16 IG-M8 /IG-M10	VM-SH 20	≥ 130	2,0	1,5	1,2	2,0	1,5	1,2	6,0		

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C163: Verschiebungen

Ankoras 0 o	hef	δ _N / N	δινο	δn∽	δv / V	δνο	δv=	
Ankergröße	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]	
M8 – M12 / IG-M6 – IG-M10 alle		0,13	0,13*N _{Rk} / 3,5	2*δνο	0,55	0,55*VRk/3,5	1,5*δνο	
M16		3,,0	51.2 TAKE 919	2 340	0,31	0,31*V _{Rk} /3,5	1,5 010	

Injektionssystem VMU plus für Mauerwerk	
Leistungen – Betonlochstein Bloc Creux B40	Anhang C58
Gruppenfaktoren, charakteristische Widerstände und Verschiebungen	

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C158 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.

Steintyp: Leichtbetonvollstein VBL

Tabelle C164: Beschreibung

Steintyp	Leichtbetonvollstein VBL	
Rohdichte	[kg/dm ³]	≥ 0,6
Normierte mittlere Druckfestigkeit	b [N/mm²]	≥2
Umrechnungsfaktor für geringe Druckfestigkeiten	ere	$(f_b / 2)^{0.5} \le 1.0$
Norm	[-]	EN 771-3:2011+A1:2015
Hersteller (Länderkennung)	[-]	z.B. Bisotherm (DE)
Steinabmessungen	[mm]	≥ 240 x 300 x 113
Bohrverfahren	[-]	Drehbohren

Tabelle C165: Montagekennwerte

Ankergröße			M8	M10	M12	M16	IG-M6	IG-M8	IG-M10
Montagedrehmoment	Tinst	[Nm]	≤ 2	≤ 2	≤2	≤2	≤ 2	≤ 2	≤ 2
Randabstand	Ccr	[mm]	150						
Minimaler Randabstand	Cmin	[mm]	60						
	Scr, II	[mm]				300			
Achsabstand	Scr, ⊥	[mm]				300			
Minimaler Achsabstand	Smin, II Smin, ⊥	[mm]				120			

Tabelle C166: Reduktionsfaktoren für Einzelanker unter Randeinfluss

7	ulant		Querlast								
Zu	glast		senkrecht zu	m freien l	parallel zum freien Rand						
	mit c ≥	Cledge,N		mit c ≥	αedge,V⊥		mit c ≥	Cledge,VII			
•	60	1,00		60	0,25		60	0,40			
	150	1,00		150	1,00	-	100	1,00			

Tabelle C167: Faktor für Ankergruppen

	Anordnung para	Anordnung senkrecht zur Lagerfuge						
		mit c ≥	mit s ≥	αg II,N		mit c ≥	mit s ≥	αgL,N
Zuglast	• •	60	120	1,00	•	60	120	1,00
		150	300	2,00		150	300	2,00
t		mit c ≥	mit s ≥	α _g II,VL		mit c ≥	mit s ≥	αστίλτ
Querlast		60	120	0,25		60	120	0,25
senkrecht zum freien Rand		150	120	1,00		150	120	1,00
Zum neien Kanu		150	300	2,00		150	300	2,00
		mit c ≥	mit s ≥	αg II,V II		mit c ≥	mit s ≥	αgL,VII
Querlast	100 600	60	120	0,40		60	120	0,40
parallel zum freien Rand		100	120	1,00	1	100	120	1,00
		150	300	2,00		150	300	2,00

Injektionssystem VMU plus für Mauerwerk Leistungen – Leichtbetonvollstein VBL Steinbeschreibung, Montagekennwerte, Reduktions- und Gruppenfaktoren Anhang C59

Steintyp: Leichtbetonvollstein VBL - Fortsetzung

Tabelle C168: Charakteristische Widerstände unter Zug- und Querlast

Ankergröße	Sieb- hülse	Effektive Veranke- rungstiefe	Charakteristische Widerstände bei c ≥ c _{cr} und s ≥ s _{cr}							
			Nutzungsbedingungen							
			d/d			w/d w/w			d/d w/d w/w	
			24°C / 40°C	50°C / 80°C	72°C / 120°C	24°C / 40°C	50°C / 80°C	72°C / 120°C	alle Temperatur- bereiche	
		hef	N _{Rk,b} = N _{Rk,p} 1)						V _{Rk,b} 1)	
		[mm]	[kN]						[kN]	
		Normierte m	ittlere Dr	ruckfestig	keit f _b ≥	2 N/mm ²	2)			
M8	(*)	80	3,0	2,5	2,0	2,5	2,0	1,5	3,0	
M10 / IG-M6	-	90								
M12 / M16 / IG-M8 / IG-M10	5 ₹ 73	100								
M8	VM-SH 12	80	2,5	2,5	2,0	2,5	2,0	1,5		
M8 / M10 / IG-M6	VM-SH 16	≥ 85								
M12 / M16 / IG-M8 / IG-M10	VM-SH 20	≥ 85								

¹⁾ $N_{Rk,b,c} = N_{Rk,p,c}$ und $V_{Rk,c | I} = V_{Rk,c \perp}$ gemäß Anhang C5

Tabelle C169: Verschiebungen

Ankergröße	hef	δ _N / N	δινο	δn=	δv/V	δνο	δv∞
	[mm]	[mm/kN]	[mm]	[mm]	[mm/kN]	[mm]	[mm]
M8 – M12 / IG-M6 – IG-M10	alle	0,10	0,10*N _{Rk} / 3,5	2*δηο	0,30	0,30*V _{Rk} /3,5	. 1,5*δνο
M16	1200				0,10	0,10*V _{Rk} /3,5	

Injektionssystem VMU plus für Mauerwerk

Leistungen – Leichtbetonvollstein VBL
Charakteristische Widerstände und Verschiebungen

Anhang C60

²⁾ Für geringere Druckfestigkeiten müssen die Widerstände mit dem Umrechnungsfaktor nach Tabelle C164 multipliziert werden. Für Steine mit höheren Festigkeiten sind die angegebenen Werte ohne Umrechnung gültig.